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Nonlocal Kardar-Parisi-Zhang equation to model interface growth
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The dynamics of the growth of interfaces in the presence of noise and when the normal velocity is constant,
in the weakly nonlinear limit, are described by the Kardar-Parisi-ZH&RY) equation. In many applications,
however, the growth is controlled by nonlocal transport, which is not contained in the original KPZ equation.
For these problems we are proposing an extension of the KPZ model, where the nonlocal contribution is
expressed through a Hilbert transform and can act to either stabilize or destabilize the interface. The model is
illustrated with a specific example from reactive infiltration. The properties of the solution of the resulting
equation are studied in one spatial dimension in the linear and the nonlinear limits, for both stable and unstable
growth. We find that the early-time behavior has a power-law scaling similar to that of the KPZ equation.
However, in the case of stable growth, the scaling of the saturation width is logarithmic, which differs from the
power law in the KPZ equation. This dependence reflects the stabilizing effect of nonlocal transport. In the
unstable case, we obtain results similar to those of Oktnail. [Phys. Rev. E55, 2649(1997)].
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[. INTRODUCTION sion relation(2) shows that the process described by the KPZ
equation is linearly stable«(<0) for all k.

The evolution of interfaces growing in a direction normal  The KPZ equation and its variants have been used to de-
to themselves, in the presence of noise and interfaciadcribe a variety of processes, from ballistic deposifi®hto
smoothing, was described in a pioneering paper by Kardathe formation of cell colonies in bacteria or tissue cultures
Parisi, and Zhang1]. These authors proposed a Langevin-(Eden model[4,5], randomly stirred fluid$6], and directed
type equation polymers in random medi&]. Of interest to this work, how-

ever, has been a more recent observation by Aharonov and

dh 5 A ) Rothman[8], who suggested that the KPZ equation can also

ot vVeh+ E(Vh) +7(x0) (D describe the evolution of the pore-grain interface in sedimen-
tary rocks when the process is reaction controlled. In the

commonly known as the KPZ-equation, for the evolution ofparticular approach if8] the relative heightasperity h of
the fluctuationh(x,t) of the height of the interface from its the grain surface grows due to a chemical reaction involving
mean. In this equation, the first term on the right-hand siddéhe pore fluid. The process is kinetically controlled, and the
describes interfacial smoothing by a surface tensidn a ~ growth is at a constant velocity, determined from the reac-
direction lateral to the main growth, and the second is thdion kinetics. We definef(z,t,x)=z—F(t,x)=0. For ex-
leading-order term for growth in a direction normal to the ample, if the reaction occurs everywhere at the constant rate
interface, whera is the growth velocity. The noisg(x,t) is A, then the normal velocity , of the frontz=F(t,x), in the
an uncorrelated Gaussian with zero mean and amplilyde absence of interfacial smoothing and noise, would be con-
satisfying (7(x,t))=0 and (n(x,t)n(x',t"))=2D&%x  Stant,
—Xx")é(t—t"), whered is the dimension of the interface and _F
5% is the d-dimensional delta function. D= _t_
The properties of the KPZ equation have been studied in " |VF|
great detail. Its considerable interest stems from the fact th
Eq. (1) is prototypical of self-affine growth with exponents
that are universal(for example, se€2] and references
therein. Methods such as the (_len_amic r_enor_malizat_ion Fi=N(1+3 |VF|2+---). (4)
group [1] have been used to obtain insight into its scaling
properties and exponents. Equati(l) is also the weakly By defining the relative height=F —\t, one then obtains
nonlinear expansion in the presence of noise of a linear equa-
tion with the spectral relationship

()

anr a KPZ-like equation, one takes the weakly nonlinear
limit, in which case Eq(3) leads to

A
ht=§|Vh|2+-~, )

w=—1vk? (2
which constitutes the nonlinear part of the KPZ equation.
wherew is the rate of growth corresponding to wave numberAddition of a diffusion term and noise then leads to the KPZ
k [and where we have assumkd exp(wt+ik-x)]. Disper-  equation.
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In many processes involving reaction-induced morphol-was proposed by Olangt al. [17] to investigate the propa-
ogy changes in porous media, however, reaction rates are ngation of combustion fronts in the presence of noise. This
necessarily slow, while the growth process may be controlle@quation was obtained from a normalized version of Sivash-
by (nonloca) transport, for example, by diffusion or convec- insky’s equation[13], which is Eq.(6) without noise and
tion. Indeed, this would also be the case for the process iwith A= —1, by differentiating with respect t® and subse-
[8], in which diffusion toward the interface constitutes the quently adding noise. Thus, [17] the noise is added to the
nonlocal transport. We cite other examples from dissolutiorgrowth of the slope of the front, rather than to the growth of
or precipitation processg8], gas-solid reactiongl0], and a  the front itself, contrary to the case in the HKRand the
variety of reaction engineering processéd]. Here, diffu- KPZ) equation. Note also that E¢9) corresponds to un-
sive or convective transport operates in the bulk of the fluidstable growth ih=1>0).
or of the porous medium and toward the grain interface, In this paper we will study the properties of the general
rather than only along the interface, as in the interfacial proequation(6) by proceeding as follow. We provide a deriva-
cess envisioned ifB]. Two other examples obeying similar tion of the HKPZ equation, first by using general physical
dynamics, but in a slightly different context, involve the dis- arguments and subsequently by focusing on the specific
placement of one fluid by another of different viscosity in aproblem of reactive infiltration under fast kinetics. Its solu-
random porous mediulfl2] and the propagation of laminar tion in one space dimension is considered next. We develop
flames[13,14. In these cases, the pressure fields governing numerical scheme using finite differences and a fast Fou-
fluid flow obey the Laplace equatiddue to Darcy’s law in  rier transform, which is tested against available analytical
the first case and to Euler's equations in the segoasl in  results in the absence of noise. Then the linearized version of
the case of steady-state diffusion, giving rise to a nonlocathe HKPZ equation, which is the counterpart of the Edwards-
term. Finally, a similar situation occurs in the acidization of Wilkinson (EW) equation[18], is analyzed. We develop as-

a porous matrif9,15], and more generally in reactive infil- ymptotics for early and late times, which allow for the
tration in porous media, an example of which will be ana-roughness exponentd any) of the linearized HKPZ equa-
lyzed in detail below. Changes in the mobility of the flowing tion to be derived. Results are presented for both the stable
phases, the expansion of fluids at the flame fronts, and thend unstable cases. Then the full HKPZ equation is solved
pore structure of the matrifpermeability, in the respective numerically in one spatial dimension. The scaling behavior
cases, affect the transport toward the front and in turn it®f the results is investigated in the small and large time lim-
evolution. These changes may result in stable or unstablis.

fronts. Under these circumstances, the KPZ equation cannot

capture the growth and coarsening dynamics, which now be- Il. DERIVATION OF THE HKPZ EQUATION

come nonlocal. _ ) i o
To account for problems in which nonlocal transport is !N this section we provide a derivation of the HKPZ equa-

dominant and cannot be neglected, we propose in this pap&pn. first by using general arguments and subsequently by
an extension of the KPZ equation, by adding to Ef.a  considering a specific example from reactive infiltration in a

term of the form(h,), where?{ is the Hilbert transform, to porous'medium. We also 'discuss briefly the process envi-
obtain, in the case of 1 dimensions, the equation sioned in[8] and show that it must also belong to the general

problem described by the HKPZ equation.
\ In general, deriving a HKPZ equation corresponding to
h,=vhy,—mH(h,)+ E(hX)2+ 7(x,t). (6) the processes described above consists of the following
steps: defining a base state corresponding to a planar inter-
face, conducting a linear stability analysis, deriving the lin-
ear dispersion relation, which must correspond to the linear-
e ) Sized HKPZ equation, considering a long-wave expansion
modification accounts for nonlocal transport in the weaklyoar the onset of the nonlocal behavior, taking the weakly
nonlinear limits, as will be shown below. Recall that the \,pjinear fimit, and adding noise. For example, all but the
H|Iber_t tra_msform is defined as the principal value of thelast steps were taken by Sivashing] in his analysis of
following integral[16]: the long-wave hydrodynamic stability of flames. Olaghial.
[17] added noise as explained above and studied the evolu-

1 = f(t) :
H(f)= _Pf —qt, @) tion of unstable frpnts.
T ) X—1 As noted previously, for the result to be of the HKPZ
type, the linear dispersion relation must include a nonlocal
and also satisfies the following property: term of the form
N N w=m|k|—vk?+--- (10
H(hy)=—Iklh, 8 a

[e.g., compare to Eq2)]. Then the linear process is uncon-
where the caret denotes the Fourier transform. We note thalitionally stable if m<0 and conditionally unstable im

the somewhat similar equation >0. The term involvingk| reflects nonlocal transport, aris-
ing from the solution of a Laplace equation at long wave-
V= v0uyy— H(vy) T vyt n(X,t) 9) lengths, and corresponds in the HKPZ equation to the Hilbert
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transform. The fact that the latter represents the flux at the The stabilizing coefficient>0 reflects an effective inter-
interface aty=0 arising from the solution of the Laplace facial tension. In displacements in porous media it expresses
equation, can be seen simply by writing a conservation equazapillarity, in reactive infiltration it expresses diffusion in the
tion of the type bulk (see beloy, in flame propagation it is related to the
Lewis number of the component limiting the reaction, and in
hi—mh,=vh,, aty=0 (1)  the process analyzed [8] it describes interfacial diffusion
along the interface. Interestingly, in the last process, diffu-
and by extending the functidmto be a harmonic function in  sion acts in two different ways: in the bulk, in order to sup-

the upper half planeyt>0), namely, by taking ply the necessary flux to the interfat@nd to destabilize or
stabilize the interface depending on whether or not the inter-
h+hy,=0 for y>0. (12)  face grows or recedes, respectiveiynd along the interface,
in order to stabilize the latter. We must point out that in
Then, if we introduce the analytic function=h+iH(h), problems such as solidificatiq23,24], where the relaxation

use of the Cauchy-Riemann conditions shows myzo of the interface is controlled by the Gibbs-Thomson condi-

=—H(h,), as postulated. In such an interpretation, for ex-tion, or in Hele-Shaw cell displacements2], where the in-
ample, of the process ¢8], the flux —H(h,), arriving at terfacia_l tension acts in proportion t(_).the. effective curvature
y=0, is used partly for the growth of the interface and parﬂyof the interface, the resulting stabilization enters at order
to satisfy the lateral diffusion along the interfai@mpare |K|°. Therefore, such problems do not have the linear disper-
with Eq (11) and also see be'o}‘NThe Lap'ace equa“mZ) Siqn relatlon(lo) and will not Iead. to a HKPZ eq.u.ation. The
may describe transport either by diffusion or by advectiongllipsis in Eq.(10) reflects the existence of additional terms
when the latter is controlled by potential flow, as, for ex-in the general problenifor example, in displacements in
ample, in the case of flow in porous media. A more rigorousPorous media, in flame propagation, gtihat are of higher
derivation for the case of reactive infiltration will be de- order and do not contribute in the long-wave limit.
scribed below. For future reference, we also note that in one Taking the weakly nonlinear limit has been done in the
dimension(1D) and form>0 there exists a cutoff mode, ~ context of flame propagation. Specifically, Sivashingk§]
=m/v, and a fastest growing modtg,,,=nv2», with growth obtained the following weakly nonlinear equation:
rate wma=Mmi4v. 1 (1—a) (=

We must note that not all processes whose linear spectrah, + ey2h+ = (vh)2= 2 f [k|A(t,k)e *~2dk dz
relationship ig10) lead to the HKPZ equation. The converse 2 81 J -
is true, however. In addition, if the linear limit is E¢LO), (13
then the nonlinear version of the process evidently cannot be ) , ,
of the KPZ type. Specifically, we will show below that such Valid at large wavelengthgin this notatione<0). For 1
is the case with the model considered &. —0>0, Eq. (_13) describes long-wave |_nstab|I|ty. Including

The parametem expresses a contrast in transport proper-ONY the nonlinear part, namely, by taking
ties across the growing interface, with stable or unstable dis- he+% |Vh[2=0 (14)

; i i tT2 =Y

placement corresponding to negative or positiverespec-

tively. As discussed above, long-wave dispersion relations ofiescribes the propagation of a front of a constant normal
the type(10) arise in a variety of problems. In displacementsye|ocity, as noted before. In the general case, we can write
in porous mediam is a normalized viscosity difference up-

stream (subscript 1 and downstrean{subscript Q of the ) N )

front, m= (uo— 1)/ (o+ 11), as pointed out by Saffman he=2Vh—mH(h)+ 5 (ho* (15

and Taylor in Hele-Shaw flowd9] or by Yortsos and Hick-

ernell[20] in general displacements in porous media. Whenan equation of this type was also proposed by Yort2

the pore structure changes as a result of flow and reactiofg describe the weakly nonlinear propagation of displace-
for example, in acidization, them=(K;—Kg)/(K;+Kp),  ment fronts in porous media. Theoretical work performed by
whereK is the flow permeabilityf21,22. In such applica- Thual, Frisch, and Henof26] has shown that Eq15) ad-
tions, nonlocal growth is driven by advection which is con-mits a polar decomposition. This property is useful for ana-
trolled by Darcy's law. In the case of flame propagation,lytical purposes and will be used later below to check the
Sivashinsky showed thah=(1— o), whereo is the coeffi-  numerical results. The final step is to add noise to @#§),
cient of thermal expansiofi3]. Here, the nonlocal transport leading to the HKPZ equation

results from Euler’s equations, which also give rise to poten-
tial flow. In interfacial growth problems, such as[8), non-
local transport is due to diffusion in the bulk. That transport
problem is similar to directional solidificatidr23,24], where
m~v andwv is the undisturbed interface velocity. The latter The random noise reflects heterogeneity and is typically an
is positive in the case of solidification or in the case ofuncorrelatedin space and timeGaussian with zero mean.
deposition/precipitation, hence indicating instability, but In the remainder of this section we will provide a deriva-
negative in the case of melting or in the case of dissolutiontion of the HKPZ equation for a model problem correspond-
indicating stability. ing to reactive infiltration, for example, the acidization of a

= o MR + 5 ()24 nxD). (19
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cp=0, Mp=1, Kp=1, up=—-Vpp, (18

where the characteristic variables for the chemical concen-
tration, the mineral concentration, the permeability, the ve-

|
R

- — 0 locity, and the pressure were taken.ca_Ls Mo, _Ko,_ a, and
e c=C /\ M=Mo ,u(_l+A)D{ Ko,. resp_ectwe_ly. Here/,.L is the flu!d viscosity,
D is the diffusion-dispersion coefficient, adis a dimen-
—_— < sionless constant expressing the capacity of the reactive pro-
q ™~ cess,
—_— //‘
— Fx y.=0 A= 200 (19)
X Mo
y _ whereg is upstream porosity. Implicit in the above is the use

of the characteristic length=(1+A)D/q and the use of

FIG. 1. Schematic of a reactive infiltration interface. Chemical Darcy’s law for fluid flow in the porous medium. Upstream
injected upstream at concentratiopand rateq reacts infinitely fast  of the front, /<0, we have

at the reactive interfacéront) with a mineral of initial concentra-

tion My. Both chemical and mineral are consumed completely at Mp=0, Kp=«, Up=—«Vpp (20)
the interface. As a result of the reaction, the permeability changes in

the two regions. The normal vector at the interface is indicated. gnd

porous rock. To derive Eq15) we will apply first a linear Jdcp 1
and then a weakly nonlinear stability analysis ——+Up- V¢ == VCp, (21)
y y ysIS. atp D (1+A)
A specific example from reactive infiltration where time was made dimensionless $l/g. In either re-

Consider the injection into a porous medium of a chemi-9'°™ the continuity equation applies, namely,

cal at concentratiort; and constant ratg. The chemical V.u.=0 22)
. . . . . . Up=VY,
does not affect the fluid viscosity but it reacts with a mineral

at the pore surface, of initial concentratibly, and results in  \yhere it was assumed that the mineral capacity is sufficiently
a change of the permeability of the porous medium, so that gyge. The problem is completed by interface conditions.

permeability contrask=K; /K, develops. We assume that across the front, the concentration of the chemical is con-
as a result of the reaction the mineral and the injected chemiinoys,

cal are completely consumed. In this notation, subscripts 0

and 1 refer to the initial and injected states, respectively. We cp=0 at F=0, (23
further assume that the reaction kinetics are fast, so that the

reaction occurs over a surfag¢&ont). This requires large but the mineral concentration undergoes a jump from 0 to 1.
Damkholer numbergsee[27] for more details Under this  In addition, conservation of mass leads to the following con-
assumption, the reacting surface separates a downstream thtion for the normal component of the front velocity:

gion, where the chemical concentration is identically zero

and the mineral is at concentratidh,, from an upstream A dcp

region, where the chemical concentration is variable due to Upn~— (1+A) oan (24)
diffusion and advection, while the mineral concentration is

identically zero(see schematic in Fig.)1One example for wheren denotes the direction of the unit normalat the
this problem could be the oxidation of minerals like pyrite or front (see Fig. L

uraninite (UQ). Although such a reaction usually leads to ~ We will consider, in sequence, the existence of a planar
the formation of secondary mineral products, the oxygen israveling wave under steady-state conditions, its linear sta-
consumed at a redox front as the mineral dissolves. Othaiility, and its weakly nonlinear stability. For simplicity, and
examples, for instance involving the dissolution of quartz,to be consistent with the rest of the text, the analysis is re-
can be readily formulated as well. For the reaction we willstricted to a 2D geometry.

take the simple scheme

) ) The base state
{chemica} + 6{minera} —{product$, (17) )

The base state, denoted by an overbar, is a planar front
where @ is the stoichiometric coefficient of the reaction. In {raveling at the dimensionless velocity, . In the limit of
dimensionless notatioisubscript D), the problem is de- fast kinetics, the base-state concentraignis given by
scribed as follows.

Define the reacting front by the equatiof(xp ,Yp ,tp) T 1-exp(§), ¢<0 (25)
=0. Downstream of the frontF>0, we have D 0, &>0,
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where we introduced the moving coordindte yp—vptp - ot ' T T ' ' ' ' j
The base-state velocity, is found using Eq(24),

- A 005 A=0.8 |, k=2.25 1

=—<1.

Up 1+ A) 1 (26)
For the stability analysis, it is convenient to introduce a co-  °
ordinate system moving with the front, s

p=§6—F(1,6), {=Xp, 7=tp, (27 -005¢ A=0.2 ,x=09

whereF is the front perturbation relative to the moving co-
ordinate [compare also with Eqs(4) and (5)], based on s A=0.8

which Eq.(21) becomes

aCD — (?CD aCD 0 051 072 ofa oi4 05 o!s 077
F+(UDP_UD_FT_UD§F§)E+UD5&_g k
1 ¢y Py cp FIG. 2. The eigenvaluew plotted as a function of the wave

. . (0 numberk for different values of the permeability contrastLong-

ap 4 ap wave instability is predicted fok>1, the process being stabilized
at smaller wavelengths due to diffusion. Unconditional stability ex-

(28) ists for k<1. ParameteA affects the numerical values @ but
does not change the qualitative nature of the instability.

T (1+A)
#*cp _, I*Cp
— +F2—|.
d,0¢ ap

Darcy’s law reads as gives after considerable manipulations the eigenvalue condi-

tion for the determination ofv. Details are omitted and can

(299  be found in[27]. We obtain

9Po :_Kapo IPp
) D¢ [?

__F_
al "t ap

in the upstream region, and as in EQ9) but with 1 replac- [A+AV1+4(w* +k)][(k+1)(k— w*)
ing « in the downstream region. The continuity equation be- Fk(k—1)(A+1)]

comes
=2(A—w*)(k—w*)(k+1)
ap oz T, 0 (30 +2A(A+ 1k(k+1)(k—1), (33
and the interface condition reads where we defined for simplicityp* = w(1+A). A plot of
A the admissible solution of Eq33) for w as a function ok
— _ dCp 2 JCp B and for different values ok is given in Fig. 2. As expected,
vptF=- (1+A) $(1+F§)_F§ a_g} at p=0. the problem is unstable in a region of large wavelengths

(32 (small wave numbejsif «>1, and stable otherwise. The
' . o . instability is driven by the change in permeability, which
Subscriptsr and{ denote differentiation with respect to these focuses flow toward the fingers and accentuates small distur-

variables. bances. It is mitigated at smaller wavelengths by the diffu-
sion of the chemical, which in this case acts to stabilize the
Linear stability analysis system. We must note that E(R3) also accepts the trivial
Consider next the linear stability analysis of the abovesolution w* =1, which is not admissible, however, as the
system. We will take the general expansion derivation was based on the assumptioh# 1 (see[27]).
For the particular application in this paper, we must con-
U= vo(p)+ V' ~yp(p)+ eV (p)exp wT+ik). sider the roots ofv=0, which in addition to the trivial solu-
(32) tion k=0 can be readily shown to occur at the vakig
where
Here V' is the perturbation of the variabk which in the
linear stability limit is expressed in terms of normal modes, (k—1)[k+1+(k—1)(1L+A)](1+A)
with o being the rate of growth of a disturbance with wave k.= (34

numberk, andi is the imaginary variable. Here, we have (k+ DIk +1+2(x=1)(1+A)]

assumed thdtis positive. More strictly speaking, one should
use |k instead. Analogously, we will takE ~expr+ikl).  As expectedk, vanishes ak— 1. Then an asymptotic ex-
Substitution in the governing equations and linearizationpansion of Eq(33) in this limit shows[27] that

016315-5



KECHAGIA, YORTSOS, AND LICHTNER PHYSICAL REVIEW BE64 016315

A (k—1) 2Ak[k+1+A(k—1)] 2r 1 é°C’ 1 oC’
CTATD) (kt 1) (ATA)A(kT1)2 ' (1+A) 9p2 (1+A) dp
(35) o,
=|U'-F _F2+lﬁ_ Fe 7°¢c (39)
Thus in the region of the onset of instability we hake « PT84+ Aldp  1+A 9p
—1 and w~(x—1)2 It follows that if we consider long _ _ _
times and large wavelengths in this limit, the problem will Subsequent integration of E(B9) gives
become quasi-one-dimensional, as[i8]. This particular ,
scaling will be considered in the nonlinear analysis to follow. 1 £_ 1 ,
Before we proceed, we also note that at this limit we have1+A) dp (1+A)
the scaling 27]
P
=— | expp)|U,—F,—F2
C'~C(p)~0((k=1)3), U;~U,(p)~O((x—1)?), fo e ‘
FZ F 1 aC|
U,=—F 36 -t &
=T (36 T+ A T AT T A o K (40)

for the leading-order expansion of the perturbations of the

concentration and of the components of the two velocities. WNere we used the continuity conditi@ (p=0)=0. The
last term in the right-hand side of the above can be calculated

Weakly nonlinear stability analysis using the interface conditio(81). We find

Consider, now, a weakly nonlinear analysis near the long- 1 9C’ F? F,
wave limit, which from Eq.(35) is meaningful when<~1. (17A) dp| “1+A A" (41)
We remark that a weakly nonlinear analysis of a similar 0

probler_n was dqne if28], but in a d'ffefe”F qontext. In tha_t Then, evaluating Eq40) at p= — and requesting that the
analysis, the width of the system was finite, the marginal,. . 2 . .

; . disturbance and its derivative vanish upstream, we obtain the
state such that the cutoff wavelengthl/k, is precisely

equal to the width, and the system was weakly perturbed tg‘)ollowmg equation forF

an unstable state, ultimately leading to a Landau equation. (A+1) 1 e
An analogous approach for two-phase flow in porous media ———F + F?— —Fiﬁj eXF(p)U;JdeO.
was done earlier if29]. A (1+A) 0

To proceed with our analysis we take again the expansion (42)

The final step is to evaluate the disturbance for the velocity
U; and insert it in Eq.42). For this, we need to find the
_ solution for the pressure disturbance in the limit taken,
Po=Po(p) +P’ (87 1. The latter can be showi27] to be equal to

CD:ED(p)'f'C,, UD:U_E)+U,:iy+U,,

whereiy is the unit vector in the main flow direction, and

F
recognize that the perturbations have the order indicated in — o Hp.L7), p<0

Eq. (36) in this limit. The equation for the perturbation in = ’ (43
concentration reads —F+1(p,{,7), p>0
5C! ol wherell satisfies the Laplace equation in the respective re-
—+(1-vp—F,~U,-U[F) ——(F,~U! gions, along with continuity of pressure and mass at the
JT ’ ap g front, p=0. By taking a Fourier transform on the varialgle
g aC! we obtain the solution
—UF,) —+u;—
¢ é)&p o o7 (k—1) £ exlklp) o wa
K, 7)=————F<Fex , ,
1 (9201 L F2 p K(K"’ 1) P P
=1+ A) | 9p2 LTTFD

which may then be used for the evaluation ﬁf,’)

F2 EJF d*C’ _E ﬁ—E—ZF 9*C’ a9 = Kdll/dp. After some calculations we find
Cop? 9k Yoap Copac| (38)

o , (k=1) |KIF
In the large-timgof O(x—1)~2?)] and large-wavelengtfof TFOU”e'{ fo qup)Updp] T (k+1) (K+1)
O(x—1)"YH]limits, recognizing the scalin(6) and assum- (45)
ing thatF=0(1), thedisturbance of the concentration sat-
isfies the following equation to ordek( 1) which, in the limit of smallk, can be inverted to
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—o (k—1) absence of noise. Then, the linearized HKPZ equation will
expp)U, dp=——=H(F,). (46)  be solved analytically. Finally, the full HKPZ equation will
0 p (K+ 1) .
be solved numerically.

g(l:lnuaglt)i/(,)nsubstltutlng back in Eq42 we find the desired L. NUMERICAL SCHEME
Equation(16) was discretized numerically using standard
A ) A (k—1) A methods. For spatial derivatives we used forward-backward
P+ (A+1) Fet (A+1) (k+1) H(F,)— szng, finite differences of lattice constatx. The Hilbert trans-
(47) form was evaluated using a fast Fourier transform algorithm.
The equation was marched in time using an Euler scheme
which is the HKPZ equation in the absence of noise, Equth time.incremgnts&t. Pgriodic boundary conditio_ns were
(15), with h=F, t=7, x=¢, A=—A/2(A+1), m=[A/(A used _for its solut|on_. If grid points are labeled by integer
+1)](k—1)/(k+1), andv=A/(A+1)>2. the discretized version of E16) reads

In the sections to follow, we will consider the general

) ! At
properties _of the_ HKPZ equatlo_n. It must be recalled, how- h (t+At)=h,(t)+ F{V[hnﬂ(t)—Zhn(t)+hn—1(t)]
ever, that its validity for a physical process, e.g., of the re- X

active infiltration type, is subject to the restrictions of large I A (1) = he (1) 12V + mAt] (1
wavelengths near the onset of instabilityamely, when the # M+ 2(0) =2 (T nt)
destabilizing contrast is weak,—1<1, or smallm>0). In + 3 V12AtR(1), (48)

the more general case of strong instability, the HKPZ equa-

tion does not generally apply and cannot capture Laplaciawhere | ,(t) is the discretized Hilbert transform calculated

growth, which must be modeled instead by processes of thesing a fast Fourier transform routine and we defid

diffusion-limited-aggregatiodDLA) type (e.g., sed15] and =2D/Ax (recall thatD is related to the noise amplitude

related referencesin a sense, in the destabilizing case theThe random numberR, are taken from a uniform distribu-

HKPZ equation corresponds to the weak-instability limit, tion between— 3 and 3. The prefactors J12At guarantees

with DLA being its strong-instability counterpart. that the noise has the same second moment as the Gaussian
Before closing this section, we must note that a similamoise integrated over the time intervat [30]. In our simu-

analysis also applies for the diffusion-reaction system studmations we have typically takeAx=1, »=0.5,%=0.1, and

ied in [8]. In that application, there is no bulk flow; the At=0.05, while we variech andm. In all simulations, the

chemical diffuses in the bulk and precipitat@s leads to a jnitial condition is a flat interfaceh=0 att=0.

dissolution of the soligat the reacting interface. In the sche-  The accuracy of the numerical scheme was tested by com-

matic of Fig. 1 only the upstream region needs to be considparing the numerical results against the analytical solution of

ered for this process. A first-order reaction is assumed t@ related equation in the absence of noise, namely, the ex-
occur at the interface with kinetic constdat(units of veloc-  tended Burgers equatidi]

ity). The interface moves in the negative direction in the case

of precipitation, and in the positive direction in the case of Uy~ 2005+ MHU = Uy, (49)
dissolution. One can then show by a linear stability analysis

that the case of precipitation is long-wave unstable for thevhich, as noted before, admits a polar decompositsj.
growing surface, the slope in the-k curve at the origin This equation describes the evolution of the slope of the
vanishing as the base-state velocity of the interface equalsterface of Eq.(16), v=h,, in the absence of noise and
the kinetic velocityk. The analysis is very similar to that for wherer=1 and\=2. For the periodic case of interest here,
directional solidification23,24]. Now, interface instability is analytical results are possible for the one-“lump” solution
driven by the nonlocal transport due to bulk diffusion. The

process is stabilized by lateral diffusion along the interface, v=n{cofn(x+a)]+cofn(x+a*)]}, (50)

an interface condition for which can be postulated by parti- ) . )

tioning the incoming flux partly to the interface growth along Where 2 is the wave number, the pole is described by the
the normalas in Eq.(31)] and partly to interfacial diffusion time-dependent complex variabde= ¢+i ¢ with >0, and
along the interface. For an equation of the KPZ type to re2* denotes the complex conjugate. Substitution of &)
sult, the latter must be taken proportional to the curvaturein Ed. (49) shows thai is a constant, which we can take as
For lack of space, this analysis will not be detailed here. If¢(0)=0, without loss in generality. We find

one proceeds along lines similar to the above, however, an .

equation similar to Eq(15) is then derived. Thus, the pro- 2nsin(2nx) (51)

cess studied i8] appears to fall in the HKPZ class al§a v cosh2ny(t)]—cog2nx)’

fact, in its unstable versiom>0).
In the remaining of this paper we will consider the solu- wherey(t) solves the equation
tion of Eq. (16) and its linear counterpart in one space di- )
mension. For this, we will first present the numerical scheme ()= 2n sinh(4ny) _ (52)
and then compare results against analytical solutions in the vy= coshiidny)—1
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hy=vhy,—mH(hy) + n(x,t). (54)

For its analysis, we follow previous work on the KPZ equa-
tion by Nattermann and Tar@3]. Consider a process with
periodic boundary conditions, initiated &t 0 [and in which
case n(x,t)=0 for t<0]. By applying a double Fourier
-08; - - p~ p - e o transform in space and time, defined as

03 : . T T T T F\(k,w)=f f e—i(kx—wt)h(xyt)dx dt, (55)

Eq. (54) becomes

] R 1 A
h(k, @)= (vk2—mk)—iw 7K, ©).

(56)

s L
X 80 100 120 140

(b)

1 1 Ryt
"o 20 40 60

Equivalently, given thatyp=0 for t<0, we may take a
FIG. 3. Comparison of the analytical solution of the extendedLaplace transform in time. Proceeding aq 83] and noting

Burgers equation, denoted with a solid line, and the numerical sothat

lution, denoted with crosses, for two different tim@st=3.57,(b)

51. The latter time corresponds effectively to a steady-state solu-

tion. HereL = 128, n= /64, andm=0.2. (57(k,w)?7(k’,w’)>=2D(277)5(k+k’)fo elvredr,

and has the implicit solution (57)
1 exp(4ny) +(1+y)/(1—y) ‘ we find using Eq(56) the result
(L+) | exgdng(0)]+(1+»)/(1—7) o _ )
1— (h(k,HA(K’ t))= m[l_e—zw ~mik)t]
- T2 2nly— wo)1=an?(1-t, (53
+y X 8(k+k"), (58)

where y=m/2n. For v to reach a nontrivial steady state
requiresy>1 (i.e., m>2n) which, in this case ¥=1), is
identical to the condition for the existence of an unstabl
mode in the linear problerdispersion relatior§10)]. 5 B >
Analytical and numerical results are shown in Fig. 3 for WAL, =(h(x,1) =(h(x,1))]%)

based on which we can calculate the mean-square width of
dhe interface over the lattice,

the cases/(0)=1, m=0.2, andn=27/L, whereL=128 is 1 [wlAx (wlAx R

the lattice size. Comparison is shown for two different times. = 4—2J (h(k,t)h(k’,t))dk dK .
The agreement between the solutions is very good, except T Jamit 2wl

near the end points of the simulation interval, where there is (59)

a small discrepancy that increases somewhat at larger times.

Figure 3 implies the existence of a “wrinkled” front, the Note that the lower and upper limits of the integrals are
slope of the front increasing rapidly at the ends of the inter2=/L and w/AX, respectively. Substitution of E¢58) and
val. This was noted in the simulations reportedid,31,32. carrying out one integration yields

The results of Fig. @) essentially correspond to an

asymptotic steady state, which, as expected from the theory, , L t)= 1 [mlax D 1— e 20K2-mk)ty gk
is reached in this case of>1. Here, the nonlinearity acts to WAL, b= T Jom (sz_m|k|)[ —€ Jdk,
stabilize the fastest growing mode. By contrasty# 1, the (60)

slope of the front eventually vanishes, all modes being

stable. Excellent agreement between theory and numericghich can be further rearranged to read
simulations was found for that case as well. Good agreement

between theory and simulations was also found in testing DL (N= 1
more complex profiles that included more poles. From these wA(L,t)= Ef
examples it was concluded that the computational scheme

would lead to accurate solutions of the HKPZ equation.

_ 2
, Zregll~e 2(z+eD]dz, (61)

Here, we introduced the notatioN=L/Ax, z=kL, c=
—mL/v=—k.L, and the dimensionless tine=tv/L2. The
effect of the nonlocal transport enters through parameter
Insight into the behavior of the HKPZ equation can bewhich is also proportional to the lattice size Note that the
obtained by considering its linearized version denominator in Eq(61) is singular wherc<0 (which cor-

IV. THE LINEARIZED HKPZ EQUATION
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responds to the destabilizing cgisbowever, the singularity oote ' ' ' ' ' '
is removable. Equatiof61) can be expressed in a compact ]
fOI"m aS 0.016 /{(’/
0014} ,///
5 DL s
w<(L,t)=—"F(b;c,N), (62 0012 s
TV L
oot /,’/ﬁ
where i
0.008 /,’
ﬂ’/
aN 1 2 0.006 -7
f(b;c,N)= 1—-e 2?24z (63
o= [ " Jdz (63
0.004F

We note that the existence of two dimensionless variables ooz’ : v » 25 s
andb, containing different and L dependences, breaks the In[(1-mL/2m)/(1-mA x/wv)]
similarity scaling tv/L? applicable in the EW equation
(wherec=0); thu_s one eXpe.CtS a d'ﬁerent scaling b?ha‘wor'for the linearized HKPZ equation in the stabilizing case and for
In the . following, we will _Corls[der the behavior of large times. The numerical results are denoted by stars and corre-
f(b;c,N) in the two asymptotic limits of large and small spond toL =16,32,64,128,256,512, respectively. Hemes — 0.5,
times, respectively, for two different cases, a stabilizing casgnq,=0.5. The width in the vertical axis is the ensemble average

c>—2m, and a destabilizing case<—2 [and where we  over 100 realizations. The dashed line corresponds to the analyti-
took into account the dispersion relatidk0)]. For each case, cally calculated slope- D/ wm=0.0032.

we will consider the two different limits of large and small
times.

L 1
35 4 4.5

FIG. 4. Dependence of the saturation width on the lattice size

1
f(b;c,N)=A(b;c,N)— Eln(2w+c

A. The stabilizing casec>—2s

2b
In the stabilizing case, and at large timds>(1), the X[1— e 2bt4m+2me)_ 22 (66)
function f(b;c;N) approaches the limit ¢

where we introduced the function

f(b;c,N 1FN1 g 64
(bic,N)~ < R e 2 (64)
1 N 1 N 272
A(bC N)= “In — ) —2b(7*N“+caN)
» ] T ¢ \wmN+c/ ¢ \wN+c
Due to the conditiort> — 27, the above integral converges.
Then, substitution in Eq.62) gives the large-time result 1
62 g g ~—m+0(872b72N2) 67)
21 ¢ 200 )= D | 1-mL/2mv 65 _
WAL O —wo(b)=——_Inj 37— —+7—|. (65  and the integral
. e . . N z —2b(Z%+c2)
Thus, in the stabilizing case the mean-square width saturates I = , In| < |(2z+c)e dz. (68)

to a value which, for sufficiently largk, has a logarithmic
dependence oh. This is to be contrasted with the power-law
scalingw?~ L that applies in the 1D EW equation. The latter
scaling can also be derived from E(5) in the limit m
—0. The saturation width decreases with increasmg re-

Note that the right-hand side of E¢66) is well defined in

the limit c— — 2, which is the point of transition from the
stabilizing to the destabilizing case. This also suggests that
flecting the more compact nature of the front at increasin he early-time scallin.g applies eqqally v_vell'to theidzestabiliz-
stabilization. The analytical results were confirmed using nuing case. For sufficiently large d_|scret|zat|dm>N ! the
merical simulations. Figure 4 shows a plotwf (L) versus ~Parametei tends to—1/zN, as in the EW equation, and
IN[(1—mL/27)/(1— mAx/ )], obtained numerically, for where we implicitly assumed thamn|Ax<v. Thus, the first

. _ . . . term in Eq.(66) (and the expansion faw?) is infinitesimally
m 0.5,»=0.5, and various lattice sizes uplte=512. In small at largeN. The contribution from the second term in

the simulations, the width was averaged over 100 realiza:= : ] . .
tions. The theoretical calculations predict a straight line witﬁEq' (66) is O(b); hence the |eading-order term arises only

a slope equal to- D/mm=0.0032. The figure shows very from the integrall. For sufficiently largeN, this becomes
good agreement between theory and simulations. .

In the opposite limit of small timed¥<1), the integral in [~ In
Eg. (63) can be manipulated to read as C Jom

- (2z+c)e D@ +cadz (69

016315-9
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0

10 , pace - Now, the denominator in Eq63) vanishes in the range of

-~ shope = /4 integration; however, the singularity is removable. The

asymptotic properties of the solution in the two limits of
large and small times, respectively, can be obtained by pro-
ceeding as follows.

To obtain the behavior of the solution at large times, we
decompose the integral into two parts,
s ok slope = 1/2 ﬁw | )
xk __ a—2b(z°+c2)
f(c;b;N e
twﬂw ( )= f z +CZ[ ldz
e
* * 2
* j E2_[1 e—2b(z +cz)]dz_ (72)
* —C

. In the limit of largeb, the second integral remains bounded,
107 10 ) o 0 sincez?+ cz>0, but the first integral does not. Thus, at large
times, the dominant contribution arises from the first term

FIG. 5. Dependence of the ensemble-averaged width on time fgenly,
the linearized HKPZ equation for the stabilizing case and at early
times. The numerical results are denoted by stars. Her@56, . -
m=—0.5, andv=0.5. The dotted lines indicate the theoretically f(b;e,N)~ Lﬂ 722+ ¢z
calculated slopes. The width is averaged over 100 realizations.

[1-e 2@+ed]dz (73

) ) . By further manipulating this integral using Watson’s lemma
the asymptotic behavior of which at smallcan be evalu- [34], we get

ated. After several manipulations, we obtain the result

22 exp(bc?/2)
oc 2c c f(b;c,N)~ : (74
I=v27b+2b Infl- ——==—|+—=|dt 2
i 4772+27Tc< c+\c?+4t \/f) c*b
Foen (70) and final substitution in Eq62) yields the asymptotic be-
havior ofw at large times,
Thus, the leading-order term &(vyb), which when substi- 1a
tuted in Eqg.(62) gives the following small-time asymptotic _ 2mv) T\ 2D 75
result: w t ex (75

—obn2N2 As expected, the linearized equation results in exponential
WZ(L’t):_ﬁ”LE[ V2mb+0(b)+0(e” 27 )], growth at large times. The unbounded growth reflects the
(71) absence of any stabilizing influence due to nonlinearity,
which was demonstrated in the corresponding @§) (see
It follows that in the rangd& “?<b<1 the width of the front also Olami et al. [17,32)). Equation (75) indicates that
scales as a power law of time with expong®=1. This  In(w?Y?) is a linear function of time, with slopm?/2v. Fig-
scaling is identical to that of the EW equation, suggestingure 6 shows the corresponding numerical results for the pa-
that in the small-time limit the nonlocal contribution does notrameterd =256, m= 0.5, andv=0.5. In agreement with the
enter to leading order. This regime is preceded by a lineatheory, the slope of the plot in Fig. 6 is very close to the
scaling regime, the interval of whicth<N~2, decreases theoreticalm?/2r=0.25. The scaling at early times for the
with increasingN, and where the corresponding exponent isdestabilizing case is identical to that for the stabilizing, given
B=13. This interval and exponent also apply in the EW casethat the nonlocal effect does not enter to leading order, hence
The above results were confirmed using numerical simua power-law scaling applies at early times.
lations. Figure 5 shows a log-log plot of(L,t) vs time. The The lack of simultaneous power-law scalings in the two
width is again averaged over 100 realizations of the noisdjmits (small and large timgsis a consequence of the fact
while the parameters in the simulations take the values that the linear HKPZ equation does not admit a self-affine
=256, m=—0.5, andv=0.5. Agreement between theory solution. Indeed, a scaling approach in whigh-Ix, h
and simulation is good, the two different regimes at small—[“h, andt—1%t [2] cannot be simultaneously satisfied for
times having the theoretical slopes pand 3, respectively. the HKPZ equation due to the presence of the nonlocal term.

B. The destabilizing casec<—2w C. The correlation function

In the destabilizing case, E¢LO) shows tham must sat- For completeness, we also present results for the correla-
isfy the constraintn>2mv/L, or, equivalently,c<—2r. tion function (the semivariogram
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FIG. 7. Snapshots of the heighfx,t) of the front of the HKPZ

the linearized HKPZ equation for the destabilizing case at largeduation under stabilizing conditions for two different times

times. The numerical results are denoted by stars, wher@56,
m=0.5, andv=0.5. The width is averaged over 100 realizations.
The dashed line is the analytical calculation with slapé/2y

=0.25.

c(r,t)=(|h(r,t)—h(0)|?

for the case of an infinitely large lattice. Working similarly

and following closely Ref[33], we find the result

C(r,t)=

2Dr Joc 1—exg —2x(y2+\y)]
0 y*+\y

s

where we

destabilizing case, the expansion at sma$ linear,

Dr
C(r,t)~ ;

The correlation function increases withand saturates at

larger to a value increasing with time,

2D\t (= 1
C(r,t)H—J_

v Jo Z2+pz

and where we introduced the time variable —m\t/v. In

the stabilizing case>0 andC(r,t) approaches a limiting
value at large times. In the destabilizing case0 and the
large-time limit can be manipulated in the same manner a
above to lead to an exponentially growing function,

Aol 7,
C(r,t)~ex > =ex >

(76)

(1—cosy)dy,
(77)
introduced the variables=—mr/v and x

=pt/r?. The behavior ofC(r,t) in the various asymptotic
limits follows closely that ofw?. For both stabilizing and

(78)

—p[l—exp(—Zzz—pz)]dz
(79

(80)

=0.25 (dotted ling and 50(solid line). Here L=128, m=—0.5,
r=0.5, and\=7.

As before, the scaling behavior is affected by the presence of
the nonlocal transport terrm, which breaks the self-
similarity and introduces additional dependences.

V. NUMERICAL SOLUTION OF THE HKPZ EQUATION

The preceding analysis suggests that the behavior of the
HKPZ equation will also depend on whether the process is
stabilizing or destabilizing. We used the numerical scheme
described above to simulate the solution of the nonlinear
equation in these two cases. Typically, the simulations were
carried out starting from an initially flat interface. However,
results were also obtained, particularly for the destabilizing
case of the noiseless equaticib), starting from a random
initial position.

Results corresponding to the stabilizing case are shown in
Fig. 7. The figure shows snapshots of the front at early and
late times. Both the front and its width increase with time
and eventually approach a mean steady state, which fluctu-
ates in both space and time. The presence of noise results in
the constant fluctuation of the front around its mean value, in
contrast to the flat front obtained asymptotically in the cor-
responding noiseless case, Egl). In addition, and in con-
trast to the linearized case, the asymptotic mean position of
the front is not zero, reflecting the effect of the nonlinear
contribution. The variation with time of the width averaged
over 100 realizations is shown in Fig. 8 far=128, m=
—0.5, and\ =7. For comparison purposes, also shown is the
ensemble-averaged width corresponding to the KPZ equation
with the same parameters. The scaling behavior of the width
appears to be the same in the two equations at early times.
However, as time proceeds the width of the HKPZ equation
arows more slowly and saturates earlier and to smaller val-
ues, compared to those of the KPZ equation. This difference
reflects the more compact front expected in the stabilizing
HKPZ compared to the KPZ equation. We recall that in the
KPZ equation the front has self-affine characteristics, with
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FIG. 8. Early-time behavior of the ensemble-averaged width for  FIG. 9. Effect ofx on the dependence of the ensemble-averaged
the KPZ (represented by circlesnd HKPZ equations under stabi- width of the HKPZ equation under stabilizing conditions, at early
lizing conditions (represented by crossesHere L=128, m times and for three different values of [A=1 (squares 7
=-0.5,v=0.5, and\=7. (crossey 17.58(diamond$]. HereL =128, m=—0.5, andv=0.5.

the interface width satisfying the dynamic scaling The results are shown in Fig. 12 and demonstrate a good
match for the three different values wftested. The slope of
w(L,t)=(h(x,t)—(h(x,1))]>*2>~L*f(t/L*#), (81) the straight line is of the same order of magnitude as in the
linearized case and decreases inversely proportionally|to
where f(c)~c? for c<1, and f(c)—const asc>1. The as|m| increases. This is consistent with the findings from the
growth exponenB= 3 characterizes the time-dependent dy-linearized HKPZ equation. We are led to conjecture, there-
namics of the roughening process, while the roughness exere, that the scaling behavior of the HKPZ equation is not of
ponenta=0.5 characterizes the roughness of the saturatethe self-affine form(81), but that the early-time power-law
interface[2]. Figure 8 suggests that the HKPZ equation alsoscaling is followed at late times by a logarithmic dependence
has an early-time power-law scaling similar to that of theof the front width on the lattice size.
KPZ, namely, with exponeng= 3. The independence from Subsequently, we studied the behavior of the HKPZ under
the parametem and the nonlocal character of the process, atestabilizing conditions, whema>0. As noted before, a rig-
early times, are consistent with the linearized HKPZ find-orous analysis of the similar equati@®), which is the ex-
ings, where the early-time scaling is identical to that of the
EW equation. The sensitivity of the early-time scaling to . . :
changes in various parameters was tested by varyjnm,
and \. Figure 9 shows that the behavior of the ensemble-
averaged width is essentially unaffected by variationa.in
This was also the case for small values\ofA similar effect
was found for the KPZ equation as well. The effect of the
nonlocal term is more importar{Fig. 10 and affects the

range of validity of the early-time power-law regime and the . ° mof
overall extent. As|m| increases, the power-law scaling at *" [ o Eggggg 5888 1
early times lasts for a shorter period, and the width is smaller g g8 8%

overall. As before, this reflects the stabilizing influence of ggﬁ

nonlocal transport. s ®

The dependence of the saturation width at large times or
parametem and the lattice sizé is shown in Fig. 11. As
before, larger values in the absolute magnitudendéad to
smaller asymptotic widths. The dependence on size is rathe L : : ;
weak. If, in an attempt to satisfy E¢81), the curves were N
fitted with a power law, a small exponent would result,
estimated from the plot ag=0.19. This exponent is consid- FIG. 10. Effect of m on the dependence of the ensemble-
erably smaller than the corresponding roughness exponent gferaged width of the HKPZ equation under stabilizing conditions,
the KPZ equation, where=0.5. In analogy with the linear- at early times and for three different values of [m=—0.2
ized HKPZ equation, we then elected to test the late-timesquares —0.5 (crossel —0.7 (circles]. HereL=128,\=7, and
results with a logarithmic function, of the formv?~InL. v=0.5.
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FIG. 11. Effect of m on the dependence of the ensemble- FIG. 13. Snapshots of the height of the interface of the noiseless
averaged width of the HKPZ equation under stabilizing conditionsHKPZ equation under destabilizing conditions starting from a noisy
at late timegm= — 0.2 (squarey —0.5(circles, —0.7 (diamond$]. initial condition. In plot(a) the time ist=5,25,50 from bottom to
HereA=7 andv=0.5. the top. In plot(b) the time ist=100,200,250 from bottom to the

top. HereL=128, m=0.5, v=0.5, and\ =7.
tended Burgers equation in the presence of noise, was under-
taken by Olamet al.[17]. These authors examined a numberwhich decreases as time increafieig. 13a)]. At later times
of issues, including the evolution of the solution of Eg.in  the shape of the front changes to a few dominant fingers and
the absence of noise but with noisy initial conditions, and théhe development of a “giant” cuspFig. 13b)]. These fea-
effect of noise. Although Eq(9) is not the same as the tures are very similar to those observed by Olatnal. [17],
HKPZ equation, we anticipate similar results. In the follow- Who explained the attraction to a giant cusp by using polar
ing we will discuss the solution of the destabilizing HKPZ decomposition. We expect that similar arguments will hold
equation in two cases, first in the absence of a noise forcingere as well. The evolution of the width of the front as a
term but with noisy initial conditions, and second in the pres-function of time is plotted in Fig. 14. Following an initially
ence of a noise forcing term. slow variation, the width enters a regime that can be approxi-

The results of a simulation of the noiseless HKPZ equamated as a power law~t‘: with an exponent estimated to
tion (15) in 1D, but with noisy initial conditions, are shown be {;=1.2. This value is similar to that reported by Olami
in Fig. 13 for different values of time. At early times, the et al.[17] for the different equation they studied. Figure 14
front evolves in terms of well-defined fingers, the number ofalso shows that the width stabilizes asymptotically to a value
expected to be size dependent.
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FIG. 12. Long-time behavior of the HKPZ equation under sta- 1 10 o 10° 10’
bilizing conditions. The ensemble-averaged width shows logarith-
mic scaling with the lattice sizé (where L=16,32,64,128,256, FIG. 14. Ensemble-averaged width for the noiseless HKPZ

512). Numerical results are indicated by squaresrfor —0.2, by  equation under destabilizing conditions starting from a noisy initial
stars form=—0.5, and by circles fom=—0.7. Herey=0.5 and condition, corresponding to Fig. 13. Hele=128, m=0.5, v
A=7. The dotted lines indicate a least squares straight-line fitt =0.5, and\=7.
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12 . T . T . ; VI. CONCLUSIONS

In this paper, we derived an equation that extends the
well-known KPZ equation in order to capture nonlocal trans-
port effects, through a Hilbert transform term. This equation,
termed the HKPZ equation, can be used to describe the long-
wave dynamics, near the onset of the nonlocal transport and
in the weakly nonlinear limit, of various physical processes,
where the nonlocal transport is governed by the Laplace
equation and the stabilizing term is a second-order diffusion
process. The nonlocal term may lead to processes that can be
3 linearly stable or unstable, depending on the parameter val-
"o ,/,\/"\NI‘/\,g‘l/‘v\‘/1 n o ues. A specific example from reactive infiltration was studied
! B u T and was shown to lead in the weakly nonlinear limit to the

‘ , , , . . noiseless HKPZ equation. The solution of the HKPZ equa-

% “ o 190 120 10 tion in one dimension was considered by developing an ap-
propriate numerical scheme, the accuracy of which was
shown by comparison with the extended Burgers equation in
the absence of noise. An analytical solution to the latter is
possible through a pole decomposition method.

Then, the linear version of the HKPZ equation was inves-
Results for the simulation of the full HKPZ equation in tigated. Asymptotics for small and large times were devel-
the presence of noise and for the destabilizing case areped and the appropriate scaling behavior was obtained ana-

shown in Fig. 15. Comparison with Fig. 13 shows a qualitalytically in these limits. The early-time behavior was found
tively different behavior. The number of fingers does notto be independent of the nonlocal transport term, hence iden-
decrease significantly as time increases, while it does ndical to that for the EW equation, for either the stabilizing or
appear that an attracting cusp actually exists. The additivehe destabilizing case. This behavior is a power law with
noise present in the HKPZ equation continuously adds nevxponent3= ;. In the stabilizing case, the width saturates at
poles, altering the dynamics of the noiseless equaftidi large times to a value that has a logarithmic dependence on
As explained in[17], the asymptotic state of the noiseless lattice size, reflecting the nonlocal character of the process.
equation is nonlinearly unstable, thus leading to a qualitaThis is different from the EW equation, where a power-law
tively new regime. The behavior in Fig. 15 has features simifegime applies. In the destabilizing case, the late-time behav-
lar to those in regime Il of Olamét al.[17], where noise is ior is exponential growth with a rate corresponding to the
of sufficiently large amplitude. Figure 16 shows the variationfastest growing mode of the linear dispersion relation, as
of the ensemble-averaged width with time for this case. I€xpected.

indicates a continuous growth, with the late-time behavior Subsequently, the full HKPZ equation was solved numeri-
resembling a power-law regime~t‘2, with the exponent cally in one spatial dimension. For the stabilizing case, the

08

0.6

h(x.4)

0.4

0.2+

\

FIG. 15. Snapshots of the heigh(x,t) of the front of the
HKPZ equation under destabilizing conditions starting with a flat
initial condition. Dotted line,t=0.25; solid line,t=10. HereL
=128,m=0.5,v=0.5, and\=7.

estimated at,~1.1. dynamical exponent was found to be identical to that of the
. KPZ equation, hence to not be affected by the nonlocal term.
1 i ! k On the other hand, the long-time behavior appears to obey a

logarithmic scaling with respect to the lattice size. The large-
time scaling is also sensitive to the nonlocal transport param-
eters. For the destabilizing case, we found results similar to
Olamiet al.[17]. The noiseless equation, but with noisy ini-
tial condition, showed attraction to a giant cusp. However,
the solution of the HKPZ equation in the presence of noise
=10k < showed continuous fluctuations, and the absence of a domi-
nant giant cusp. The width at late times was found to obey a
o power-law growth.
F These results should find direct applications to the dynam-
¥ ics of growing interfaces, where the flux to the interface is
* controlled by a nonlocal Laplacian transport. Such applica-
tions are many and cover a broad range of physical pro-
. ‘ . cesses. For example, they may include the displacement of
2 107 10° 10 10° viscous fluids in porous media, convection-reaction in po-
! rous media with permeability changes, reaction-diffusion
FIG. 16. The ensemble-averaged width of the HKPZ equatiorProcesses on pore surfaces with morphological changes, and
under destabilizing conditions as a function of time. Here128,  flame propagation. We also believe that the process studied
m=0.5,»=0.5, and\=7. in [8] falls in the same class. The effect of the non-
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local term becomes important at large times, the early-timavavelengths near the onset of instabiliamely, when the
behavior being controlled by the KPZ dynamics. In the sta-destabilizing contrast is weak,—1<1, or small,m>0). In
bilizing case (n<0), the width asymptotically stabilizes; the more general case of strong instability, the HKPZ equa-
however, the power-law prediction of the KPZ equation mustion does not apply and cannot capture Laplacian growth,
now be replaced by a logarithmic dependence on the latticghich must be modeled instead by processes such as
size. This dependence breaks down the spatiotemporal selfiffusion-limited aggregatiorte.g., sed15] and related ref-
affinity of the KPZ interfaces, and also leads to more comgrences In a sense, in the destabilizing case the HKPZ

pact fronts. The development of more compact fronts is &quation corresponds to the weak-instability limit, with DLA
result of the stabilizing influence of nonlocal transport. Un-peing its strong-instability counterpart.

der such conditions, therefore, one should use caution before

applying the scalings derived from the KPZ equation. In the

destabilizing case, the_evg!utlon of .|nterfaces at large times ACKNOWLEDGMENTS
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