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Nonlocal Kardar-Parisi-Zhang equation to model interface growth
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The dynamics of the growth of interfaces in the presence of noise and when the normal velocity is constant,
in the weakly nonlinear limit, are described by the Kardar-Parisi-Zhang~KPZ! equation. In many applications,
however, the growth is controlled by nonlocal transport, which is not contained in the original KPZ equation.
For these problems we are proposing an extension of the KPZ model, where the nonlocal contribution is
expressed through a Hilbert transform and can act to either stabilize or destabilize the interface. The model is
illustrated with a specific example from reactive infiltration. The properties of the solution of the resulting
equation are studied in one spatial dimension in the linear and the nonlinear limits, for both stable and unstable
growth. We find that the early-time behavior has a power-law scaling similar to that of the KPZ equation.
However, in the case of stable growth, the scaling of the saturation width is logarithmic, which differs from the
power law in the KPZ equation. This dependence reflects the stabilizing effect of nonlocal transport. In the
unstable case, we obtain results similar to those of Olamiet al. @Phys. Rev. E55, 2649~1997!#.
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I. INTRODUCTION

The evolution of interfaces growing in a direction norm
to themselves, in the presence of noise and interfa
smoothing, was described in a pioneering paper by Kar
Parisi, and Zhang@1#. These authors proposed a Langev
type equation

]h

]t
5n“2h1

l

2
~“h!21h~x,t ! ~1!

commonly known as the KPZ-equation, for the evolution
the fluctuationh(x,t) of the height of the interface from it
mean. In this equation, the first term on the right-hand s
describes interfacial smoothing by a surface tensionn in a
direction lateral to the main growth, and the second is
leading-order term for growth in a direction normal to t
interface, wherel is the growth velocity. The noiseh(x,t) is
an uncorrelated Gaussian with zero mean and amplitudD,
satisfying ^h(x,t)&50 and ^h(x,t)h(x8,t8)&52Ddd(x
2x8)d(t2t8), whered is the dimension of the interface an
dd is thed-dimensional delta function.

The properties of the KPZ equation have been studie
great detail. Its considerable interest stems from the fact
Eq. ~1! is prototypical of self-affine growth with exponen
that are universal~for example, see@2# and references
therein!. Methods such as the dynamic renormalizati
group @1# have been used to obtain insight into its scali
properties and exponents. Equation~1! is also the weakly
nonlinear expansion in the presence of noise of a linear e
tion with the spectral relationship

v52nk2, ~2!

wherev is the rate of growth corresponding to wave numb
k @and where we have assumedh;exp(vt1ik•x)#. Disper-
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sion relation~2! shows that the process described by the K
equation is linearly stable (v,0) for all k.

The KPZ equation and its variants have been used to
scribe a variety of processes, from ballistic deposition@3# to
the formation of cell colonies in bacteria or tissue cultur
~Eden model! @4,5#, randomly stirred fluids@6#, and directed
polymers in random media@7#. Of interest to this work, how-
ever, has been a more recent observation by Aharonov
Rothman@8#, who suggested that the KPZ equation can a
describe the evolution of the pore-grain interface in sedim
tary rocks when the process is reaction controlled. In
particular approach in@8# the relative height~asperity! h of
the grain surface grows due to a chemical reaction involv
the pore fluid. The process is kinetically controlled, and
growth is at a constant velocity, determined from the re
tion kinetics. We definef (z,t,x)5z2F(t,x)50. For ex-
ample, if the reaction occurs everywhere at the constant
l, then the normal velocityvn of the frontz5F(t,x), in the
absence of interfacial smoothing and noise, would be c
stant,

vn[
2Ft

u“Fu
5l. ~3!

For a KPZ-like equation, one takes the weakly nonline
limit, in which case Eq.~3! leads to

Ft5l~11 1
2 u“Fu21¯ !. ~4!

By defining the relative heighth5F2lt, one then obtains

ht5
l

2
u“hu21¯ , ~5!

which constitutes the nonlinear part of the KPZ equatio
Addition of a diffusion term and noise then leads to the KP
equation.
©2001 The American Physical Society15-1
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KECHAGIA, YORTSOS, AND LICHTNER PHYSICAL REVIEW E64 016315
In many processes involving reaction-induced morph
ogy changes in porous media, however, reaction rates are
necessarily slow, while the growth process may be contro
by ~nonlocal! transport, for example, by diffusion or conve
tion. Indeed, this would also be the case for the proces
@8#, in which diffusion toward the interface constitutes t
nonlocal transport. We cite other examples from dissolut
or precipitation processes@9#, gas-solid reactions@10#, and a
variety of reaction engineering processes@11#. Here, diffu-
sive or convective transport operates in the bulk of the fl
or of the porous medium and toward the grain interfa
rather than only along the interface, as in the interfacial p
cess envisioned in@8#. Two other examples obeying simila
dynamics, but in a slightly different context, involve the d
placement of one fluid by another of different viscosity in
random porous medium@12# and the propagation of lamina
flames@13,14#. In these cases, the pressure fields govern
fluid flow obey the Laplace equation~due to Darcy’s law in
the first case and to Euler’s equations in the second!, as in
the case of steady-state diffusion, giving rise to a nonlo
term. Finally, a similar situation occurs in the acidization
a porous matrix@9,15#, and more generally in reactive infil
tration in porous media, an example of which will be an
lyzed in detail below. Changes in the mobility of the flowin
phases, the expansion of fluids at the flame fronts, and
pore structure of the matrix~permeability!, in the respective
cases, affect the transport toward the front and in turn
evolution. These changes may result in stable or unst
fronts. Under these circumstances, the KPZ equation ca
capture the growth and coarsening dynamics, which now
come nonlocal.

To account for problems in which nonlocal transport
dominant and cannot be neglected, we propose in this p
an extension of the KPZ equation, by adding to Eq.~1! a
term of the formH(hx), whereH is the Hilbert transform, to
obtain, in the case of 111 dimensions, the equation

ht5nhxx2mH~hx!1
l

2
~hx!

21h~x,t !. ~6!

For simplicity, we will refer to Eq.~6! as the HKPZ~Hilbert-
KPZ! equation. In the various applications mentioned, t
modification accounts for nonlocal transport in the wea
nonlinear limits, as will be shown below. Recall that t
Hilbert transform is defined as the principal value of t
following integral @16#:

H~ f !5
1

p
PE

2`

` f ~ t !

x2t
dt, ~7!

and also satisfies the following property:

Ĥ~hx!52ukuĥ, ~8!

where the caret denotes the Fourier transform. We note
the somewhat similar equation

v t5nvxx2H~vx!1vvx1h~x,t ! ~9!
01631
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was proposed by Olamiet al. @17# to investigate the propa
gation of combustion fronts in the presence of noise. T
equation was obtained from a normalized version of Siva
insky’s equation@13#, which is Eq. ~6! without noise and
with l521, by differentiating with respect tox and subse-
quently adding noise. Thus, in@17# the noise is added to th
growth of the slope of the front, rather than to the growth
the front itself, contrary to the case in the HKPZ~and the
KPZ! equation. Note also that Eq.~9! corresponds to un-
stable growth (m51.0).

In this paper we will study the properties of the gene
equation~6! by proceeding as follow. We provide a deriva
tion of the HKPZ equation, first by using general physic
arguments and subsequently by focusing on the spe
problem of reactive infiltration under fast kinetics. Its sol
tion in one space dimension is considered next. We deve
a numerical scheme using finite differences and a fast F
rier transform, which is tested against available analyti
results in the absence of noise. Then the linearized versio
the HKPZ equation, which is the counterpart of the Edwar
Wilkinson ~EW! equation@18#, is analyzed. We develop as
ymptotics for early and late times, which allow for th
roughness exponents~if any! of the linearized HKPZ equa
tion to be derived. Results are presented for both the st
and unstable cases. Then the full HKPZ equation is sol
numerically in one spatial dimension. The scaling behav
of the results is investigated in the small and large time li
its.

II. DERIVATION OF THE HKPZ EQUATION

In this section we provide a derivation of the HKPZ equ
tion, first by using general arguments and subsequently
considering a specific example from reactive infiltration in
porous medium. We also discuss briefly the process e
sioned in@8# and show that it must also belong to the gene
problem described by the HKPZ equation.

In general, deriving a HKPZ equation corresponding
the processes described above consists of the follow
steps: defining a base state corresponding to a planar i
face, conducting a linear stability analysis, deriving the l
ear dispersion relation, which must correspond to the line
ized HKPZ equation, considering a long-wave expans
near the onset of the nonlocal behavior, taking the wea
nonlinear limit, and adding noise. For example, all but t
last steps were taken by Sivashinsky@13# in his analysis of
the long-wave hydrodynamic stability of flames. Olamiet al.
@17# added noise as explained above and studied the ev
tion of unstable fronts.

As noted previously, for the result to be of the HKP
type, the linear dispersion relation must include a nonlo
term of the form

v5muku2nk21¯ ~10!

@e.g., compare to Eq.~2!#. Then the linear process is uncon
ditionally stable if m,0 and conditionally unstable ifm
.0. The term involvinguku reflects nonlocal transport, aris
ing from the solution of a Laplace equation at long wav
lengths, and corresponds in the HKPZ equation to the Hilb
5-2
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NONLOCAL KARDAR-PARISI-ZHANG EQUATION TO . . . PHYSICAL REVIEW E64 016315
transform. The fact that the latter represents the flux at
interface aty50 arising from the solution of the Laplac
equation, can be seen simply by writing a conservation eq
tion of the type

ht2mhy5nhxx at y50 ~11!

and by extending the functionh to be a harmonic function in
the upper half plane (y.0), namely, by taking

hxx1hyy50 for y.0. ~12!

Then, if we introduce the analytic functionw5h1 iH(h),
use of the Cauchy-Riemann conditions shows thathyuy50
52H(hx), as postulated. In such an interpretation, for e
ample, of the process of@8#, the flux 2H(hx), arriving at
y50, is used partly for the growth of the interface and par
to satisfy the lateral diffusion along the interface@compare
with Eq. ~11! and also see below#. The Laplace equation~12!
may describe transport either by diffusion or by advecti
when the latter is controlled by potential flow, as, for e
ample, in the case of flow in porous media. A more rigoro
derivation for the case of reactive infiltration will be d
scribed below. For future reference, we also note that in
dimension~1D! and form.0 there exists a cutoff modekc
5m/n, and a fastest growing modekmax5m/2n, with growth
ratevmax5m2/4n.

We must note that not all processes whose linear spe
relationship is~10! lead to the HKPZ equation. The conver
is true, however. In addition, if the linear limit is Eq.~10!,
then the nonlinear version of the process evidently canno
of the KPZ type. Specifically, we will show below that suc
is the case with the model considered in@8#.

The parameterm expresses a contrast in transport prop
ties across the growing interface, with stable or unstable
placement corresponding to negative or positivem, respec-
tively. As discussed above, long-wave dispersion relation
the type~10! arise in a variety of problems. In displacemen
in porous media,m is a normalized viscosity difference up
stream ~subscript 1! and downstream~subscript 0! of the
front, m5(m02m1)/(m01m1), as pointed out by Saffman
and Taylor in Hele-Shaw flows@19# or by Yortsos and Hick-
ernell @20# in general displacements in porous media. Wh
the pore structure changes as a result of flow and reac
for example, in acidization, thenm5(K12K0)/(K11K0),
whereK is the flow permeability@21,22#. In such applica-
tions, nonlocal growth is driven by advection which is co
trolled by Darcy’s law. In the case of flame propagatio
Sivashinsky showed thatm5(12s), wheres is the coeffi-
cient of thermal expansion@13#. Here, the nonlocal transpo
results from Euler’s equations, which also give rise to pot
tial flow. In interfacial growth problems, such as in@8#, non-
local transport is due to diffusion in the bulk. That transp
problem is similar to directional solidification@23,24#, where
m;v andv is the undisturbed interface velocity. The latt
is positive in the case of solidification or in the case
deposition/precipitation, hence indicating instability, b
negative in the case of melting or in the case of dissoluti
indicating stability.
01631
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The stabilizing coefficientn.0 reflects an effective inter
facial tension. In displacements in porous media it expres
capillarity, in reactive infiltration it expresses diffusion in th
bulk ~see below!, in flame propagation it is related to th
Lewis number of the component limiting the reaction, and
the process analyzed in@8# it describes interfacial diffusion
along the interface. Interestingly, in the last process, dif
sion acts in two different ways: in the bulk, in order to su
ply the necessary flux to the interface~and to destabilize or
stabilize the interface depending on whether or not the in
face grows or recedes, respectively! and along the interface
in order to stabilize the latter. We must point out that
problems such as solidification@23,24#, where the relaxation
of the interface is controlled by the Gibbs-Thomson con
tion, or in Hele-Shaw cell displacements@12#, where the in-
terfacial tension acts in proportion to the effective curvatu
of the interface, the resulting stabilization enters at or
uku3. Therefore, such problems do not have the linear disp
sion relation~10! and will not lead to a HKPZ equation. Th
ellipsis in Eq.~10! reflects the existence of additional term
in the general problem~for example, in displacements i
porous media, in flame propagation, etc.! that are of higher
order and do not contribute in the long-wave limit.

Taking the weakly nonlinear limit has been done in t
context of flame propagation. Specifically, Sivashinsky@13#
obtained the following weakly nonlinear equation:

ht1e¹2h1
1

2
~“h!25

~12s!

8p2 E
2`

`

ukuĥ~ t,k!eik•~x2z!dk dz

~13!

valid at large wavelengths~in this notatione,0!. For 1
2s.0, Eq. ~13! describes long-wave instability. Includin
only the nonlinear part, namely, by taking

ht1
1
2 u“hu250, ~14!

describes the propagation of a front of a constant nor
velocity, as noted before. In the general case, we can w

ht5n¹2h2mH~hx!1
l

2
~hx!

2. ~15!

An equation of this type was also proposed by Yortsos@25#
to describe the weakly nonlinear propagation of displa
ment fronts in porous media. Theoretical work performed
Thual, Frisch, and Henon@26# has shown that Eq.~15! ad-
mits a polar decomposition. This property is useful for an
lytical purposes and will be used later below to check
numerical results. The final step is to add noise to Eq.~15!,
leading to the HKPZ equation

ht5nhxx2mH~hx!1
l

2
~hx!

21h~x,t !. ~16!

The random noise reflects heterogeneity and is typically
uncorrelated~in space and time! Gaussian with zero mean.

In the remainder of this section we will provide a deriv
tion of the HKPZ equation for a model problem correspon
ing to reactive infiltration, for example, the acidization of
5-3
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KECHAGIA, YORTSOS, AND LICHTNER PHYSICAL REVIEW E64 016315
porous rock. To derive Eq.~15! we will apply first a linear
and then a weakly nonlinear stability analysis.

A specific example from reactive infiltration

Consider the injection into a porous medium of a chem
cal at concentrationc1 and constant rateq. The chemical
does not affect the fluid viscosity but it reacts with a mine
at the pore surface, of initial concentrationM0 , and results in
a change of the permeability of the porous medium, so th
permeability contrastk[K1 /K0 develops. We assume tha
as a result of the reaction the mineral and the injected che
cal are completely consumed. In this notation, subscrip
and 1 refer to the initial and injected states, respectively.
further assume that the reaction kinetics are fast, so tha
reaction occurs over a surface~front!. This requires large
Damkholer numbers~see@27# for more details!. Under this
assumption, the reacting surface separates a downstrea
gion, where the chemical concentration is identically ze
and the mineral is at concentrationM0 , from an upstream
region, where the chemical concentration is variable due
diffusion and advection, while the mineral concentration
identically zero~see schematic in Fig. 1!. One example for
this problem could be the oxidation of minerals like pyrite
uraninite (UO2). Although such a reaction usually leads
the formation of secondary mineral products, the oxygen
consumed at a redox front as the mineral dissolves. O
examples, for instance involving the dissolution of quar
can be readily formulated as well. For the reaction we w
take the simple scheme

$chemical%1u$mineral%→$products%, ~17!

whereu is the stoichiometric coefficient of the reaction.
dimensionless notation~subscript D!, the problem is de-
scribed as follows.

Define the reacting front by the equationF(xD ,yD ,tD)
50. Downstream of the front,F.0, we have

FIG. 1. Schematic of a reactive infiltration interface. Chemi
injected upstream at concentrationc1 and rateq reacts infinitely fast
at the reactive interface~front! with a mineral of initial concentra-
tion M0 . Both chemical and mineral are consumed completely
the interface. As a result of the reaction, the permeability change
the two regions. The normal vector at the interface is indicated
01631
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cD50, MD51, KD51, uD52“pD , ~18!

where the characteristic variables for the chemical conc
tration, the mineral concentration, the permeability, the
locity, and the pressure were taken asc1 , M0 , K0 , q, and
m(11A)D/K0 , respectively. Here,m is the fluid viscosity,
D is the diffusion-dispersion coefficient, andA is a dimen-
sionless constant expressing the capacity of the reactive
cess,

A5
fuc1

M0
, ~19!

wheref is upstream porosity. Implicit in the above is the u
of the characteristic lengthl 5(11A)D/q and the use of
Darcy’s law for fluid flow in the porous medium. Upstrea
of the front,F,0, we have

MD50, KD5k, uD52k“pD ~20!

and

]cD

]tD
1uD•“cD

5
1

~11A!
¹2cD , ~21!

where time was made dimensionless byf l /q. In either re-
gion, the continuity equation applies, namely,

“•uD50, ~22!

where it was assumed that the mineral capacity is sufficie
large. The problem is completed by interface conditio
Across the front, the concentration of the chemical is co
tinuous,

cD50 at F50, ~23!

but the mineral concentration undergoes a jump from 0 to
In addition, conservation of mass leads to the following co
dition for the normal component of the front velocity:

vDn52
A

~11A!

]cD

]n
~24!

where n denotes the direction of the unit normaln at the
front ~see Fig. 1!.

We will consider, in sequence, the existence of a pla
traveling wave under steady-state conditions, its linear
bility, and its weakly nonlinear stability. For simplicity, an
to be consistent with the rest of the text, the analysis is
stricted to a 2D geometry.

The base state

The base state, denoted by an overbar, is a planar f
traveling at the dimensionless velocityv̄D . In the limit of
fast kinetics, the base-state concentrationc̄D is given by

c̄D5H 12exp~j!, j,0

0, j.0,
~25!

l

t
in
5-4
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NONLOCAL KARDAR-PARISI-ZHANG EQUATION TO . . . PHYSICAL REVIEW E64 016315
where we introduced the moving coordinatej5yD2 v̄DtD .
The base-state velocityv̄D is found using Eq.~24!,

v̄D5
A

~11A!
,1. ~26!

For the stability analysis, it is convenient to introduce a c
ordinate system moving with the front,

r5j2F~t,j!, z5xD , t5tD , ~27!

whereF is the front perturbation relative to the moving c
ordinate @compare also with Eqs.~4! and ~5!#, based on
which Eq.~21! becomes

]cD

]t
1~uDr2 v̄D2Ft2uDzFz!

]cD

]r
1uDz

]cD

]z

5
1

~11A! F]2cD

]r2 1
]2cD

]z2 2Fzz

]cD

]r

22Fz

]2cD

]r]z
1Fz

2 ]2cD

]r2 G . ~28!

Darcy’s law reads as

uDr
52k

]pD

]r
, uDz52kF]rD

]z
2Fz

]pD

]r G ~29!

in the upstream region, and as in Eq.~29! but with 1 replac-
ing k in the downstream region. The continuity equation b
comes

]uDr

]r
1

]uDz

]z
2Fz

]uDz

]r
50 ~30!

and the interface condition reads

v̄D1Ft52
A

~11A! F]cD

]r
~11Fz

2!2Fz

]cD

]z G at r50.

~31!

Subscriptst andz denote differentiation with respect to the
variables.

Linear stability analysis

Consider next the linear stability analysis of the abo
system. We will take the general expansion

cD5c̄D~r!1C8'c̄D~r!1eC~r!exp~vt1 ikz!.
~32!

Here C8 is the perturbation of the variablec, which in the
linear stability limit is expressed in terms of normal mode
with v being the rate of growth of a disturbance with wa
numberk, and i is the imaginary variable. Here, we hav
assumed thatk is positive. More strictly speaking, one shou
use uku instead. Analogously, we will takeF;exp(vt1ikz).
Substitution in the governing equations and linearizat
01631
-

-

e

,

n

gives after considerable manipulations the eigenvalue co
tion for the determination ofv. Details are omitted and ca
be found in@27#. We obtain

@A1AA114~v* 1k2!#@~k11!~k2v* !

1k~k21!~A11!#

52~A2v* !~k2v* !~k11!

12A~A11!k~k11!~k21!, ~33!

where we defined for simplicityv* 5v(11A). A plot of
the admissible solution of Eq.~33! for v as a function ofk
and for different values ofk is given in Fig. 2. As expected
the problem is unstable in a region of large waveleng
~small wave numbers! if k.1, and stable otherwise. Th
instability is driven by the change in permeability, whic
focuses flow toward the fingers and accentuates small dis
bances. It is mitigated at smaller wavelengths by the dif
sion of the chemical, which in this case acts to stabilize
system. We must note that Eq.~33! also accepts the trivia
solution v* 51, which is not admissible, however, as th
derivation was based on the assumptionv* Þ1 ~see@27#!.

For the particular application in this paper, we must co
sider the roots ofv50, which in addition to the trivial solu-
tion k50 can be readily shown to occur at the valuekc ,
where

kc5
~k21!@k111~k21!~11A!#~11A!

~k11!@k1112~k21!~11A!#
. ~34!

As expected,kc vanishes ask→1. Then an asymptotic ex
pansion of Eq.~33! in this limit shows@27# that

FIG. 2. The eigenvaluev plotted as a function of the wave
numberk for different values of the permeability contrastk. Long-
wave instability is predicted fork.1, the process being stabilize
at smaller wavelengths due to diffusion. Unconditional stability e
ists for k,1. ParameterA affects the numerical values ofv but
does not change the qualitative nature of the instability.
5-5
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v5
A

~A11!

~k21!

~k11!
k2

2Ak@k111A~k21!#

~11A!2~k11!2 k21¯ .

~35!

Thus in the region of the onset of instability we havek;k
21 and v;(k21)2. It follows that if we consider long
times and large wavelengths in this limit, the problem w
become quasi-one-dimensional, as in@13#. This particular
scaling will be considered in the nonlinear analysis to follo
Before we proceed, we also note that at this limit we ha
the scaling@27#

C8;C~r!;O„~k21!2
…, Ur8;Ur~r!;O„~k21!2

…,

Uz52Fz ~36!

for the leading-order expansion of the perturbations of
concentration and of the components of the two velocitie

Weakly nonlinear stability analysis

Consider, now, a weakly nonlinear analysis near the lo
wave limit, which from Eq.~35! is meaningful whenk;1.
We remark that a weakly nonlinear analysis of a simi
problem was done in@28#, but in a different context. In tha
analysis, the width of the system was finite, the margi
state such that the cutoff wavelength;1/kc is precisely
equal to the width, and the system was weakly perturbe
an unstable state, ultimately leading to a Landau equat
An analogous approach for two-phase flow in porous me
was done earlier in@29#.

To proceed with our analysis we take again the expans

cD5 c̄D~r!1C8, uD5ūD1U85 iy1U8,

pD5 p̄D~r!1P8 ~37!

where iy is the unit vector in the main flow direction, an
recognize that the perturbations have the order indicate
Eq. ~36! in this limit. The equation for the perturbation i
concentration reads

]C8

]t
1~12 v̄D2Ft2Ur82Uz8Fz!

]C8

]r
2~Ft2Ur8

2Uz8Fz!
] c̄

]r
1uz8

]C8

]z

5
1

~11A! F]2C8

]r2 ~11Fz
2!

1Fz
2 ]2 c̄

]r2 1
]2C8

]z2 2Fzz

] c̄

]r
22Fz

]2C8

]r]zG . ~38!

In the large-time@of O(k21)22)# and large-wavelength@of
O(k21)21)# limits, recognizing the scaling~36! and assum-
ing thatF5O(1), thedisturbance of the concentration sa
isfies the following equation to order (k21)2:
01631
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1

~11A!

]2C8

]r2 2
1

~11A!

]C8

]r

5FUr82Ft2Fz
21

Fzz

11AG ] c̄

]r
2

Fz
2

11A

]2 c̄

]r2 . ~39!

Subsequent integration of Eq.~39! gives

1

~11A!

]C8

]r
2

1

~11A!
C8

52E
0

r

exp~r!FUr82Ft2Fz
2

2
Fz

2

11A
1

Fzz

11AGdr1
1

~11A!

]C8

]r U
0

, ~40!

where we used the continuity conditionC8(r50)50. The
last term in the right-hand side of the above can be calcula
using the interface condition~31!. We find

1

~11A!

]C8

]r U
0

5
Fz

2

11A
2

Ft

A
. ~41!

Then, evaluating Eq.~40! at r52` and requesting that the
disturbance and its derivative vanish upstream, we obtain
following equation forF:

~A11!

A
Ft1Fz

22
1

~11A!
Fzz1E

0

2`

exp~r!Ur8dr50.

~42!

The final step is to evaluate the disturbance for the velo
Ur8 and insert it in Eq.~42!. For this, we need to find the
solution for the pressure disturbance in the limit taken,k
→1. The latter can be shown@27# to be equal to

P85H 2
F

k
1P~r,z,t!, r,0

2F1P~r,z,t!, r.0

, ~43!

whereP satisfies the Laplace equation in the respective
gions, along with continuity of pressure and mass at
front, r50. By taking a Fourier transform on the variablez,
we obtain the solution

P̂~r,k,t!52
~k21!

k~k11!
F̂ exp~ ukur!, r,0, ~44!

which may then be used for the evaluation ofÛr8

52k]P̂/]r. After some calculations we find

TFourierH E
0

2`

exp~r!Ur8drJ 52
~k21!

~k11!

ukuF̂
~ uku11!

,

~45!

which, in the limit of smallk, can be inverted to
5-6
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E
0

2`

exp~r!Ur8dr5
~k21!

~k11!
H~Fz!. ~46!

Finally, substituting back in Eq.~42! we find the desired
equation

Ft1
A

~A11!
Fz

21
A

~A11!

~k21!

~k11!
H~Fz!2

A

~A11!2 Fzz50,

~47!

which is the HKPZ equation in the absence of noise,
~15!, with h5F, t5t, x5z, l52A/2(A11), m5@A/(A
11)#(k21)/(k11), andn5A/(A11)2.

In the sections to follow, we will consider the gener
properties of the HKPZ equation. It must be recalled, ho
ever, that its validity for a physical process, e.g., of the
active infiltration type, is subject to the restrictions of lar
wavelengths near the onset of instability~namely, when the
destabilizing contrast is weak,k21!1, or smallm.0!. In
the more general case of strong instability, the HKPZ eq
tion does not generally apply and cannot capture Laplac
growth, which must be modeled instead by processes of
diffusion-limited-aggregation~DLA ! type ~e.g., see@15# and
related references!. In a sense, in the destabilizing case t
HKPZ equation corresponds to the weak-instability lim
with DLA being its strong-instability counterpart.

Before closing this section, we must note that a sim
analysis also applies for the diffusion-reaction system st
ied in @8#. In that application, there is no bulk flow; th
chemical diffuses in the bulk and precipitates~or leads to a
dissolution of the solid! at the reacting interface. In the sch
matic of Fig. 1 only the upstream region needs to be con
ered for this process. A first-order reaction is assumed
occur at the interface with kinetic constantK ~units of veloc-
ity!. The interface moves in the negative direction in the c
of precipitation, and in the positive direction in the case
dissolution. One can then show by a linear stability analy
that the case of precipitation is long-wave unstable for
growing surface, the slope in thev-k curve at the origin
vanishing as the base-state velocity of the interface eq
the kinetic velocityK. The analysis is very similar to that fo
directional solidification@23,24#. Now, interface instability is
driven by the nonlocal transport due to bulk diffusion. T
process is stabilized by lateral diffusion along the interfa
an interface condition for which can be postulated by pa
tioning the incoming flux partly to the interface growth alon
the normal@as in Eq.~31!# and partly to interfacial diffusion
along the interface. For an equation of the KPZ type to
sult, the latter must be taken proportional to the curvatu
For lack of space, this analysis will not be detailed here
one proceeds along lines similar to the above, however
equation similar to Eq.~15! is then derived. Thus, the pro
cess studied in@8# appears to fall in the HKPZ class also~in
fact, in its unstable version,m.0!.

In the remaining of this paper we will consider the so
tion of Eq. ~16! and its linear counterpart in one space
mension. For this, we will first present the numerical sche
and then compare results against analytical solutions in
01631
.

l
-
-

-
n

he

,

r
-

d-
to

e
f
is
e

ls

,
i-

-
.

f
n

e
e

absence of noise. Then, the linearized HKPZ equation
be solved analytically. Finally, the full HKPZ equation wi
be solved numerically.

III. NUMERICAL SCHEME

Equation~16! was discretized numerically using standa
methods. For spatial derivatives we used forward-backw
finite differences of lattice constantDx. The Hilbert trans-
form was evaluated using a fast Fourier transform algorith
The equation was marched in time using an Euler sche
with time incrementsDt. Periodic boundary conditions wer
used for its solution. If grid points are labeled by integern,
the discretized version of Eq.~16! reads

hn~ t1Dt !5hn~ t !1
Dt

Dx2 $n@hn11~ t !22hn~ t !1hn21~ t !#

1 1
8 l@hn11~ t !2hn21~ t !#2%1mDtI n~ t !

1SA12DtRn~ t !, ~48!

where I n(t) is the discretized Hilbert transform calculate
using a fast Fourier transform routine and we definedS2

52D/Dx ~recall thatD is related to the noise amplitude!.
The random numbersRn are taken from a uniform distribu
tion between2 1

2 and 1
2. The prefactorSA12Dt guarantees

that the noise has the same second moment as the Gau
noise integrated over the time intervalDt @30#. In our simu-
lations we have typically takenDx51, n50.5, S50.1, and
Dt50.05, while we variedl and m. In all simulations, the
initial condition is a flat interface,h50 at t50.

The accuracy of the numerical scheme was tested by c
paring the numerical results against the analytical solution
a related equation in the absence of noise, namely, the
tended Burgers equation@31#

v t22vvx1mHvx5vxx , ~49!

which, as noted before, admits a polar decomposition@26#.
This equation describes the evolution of the slope of
interface of Eq.~16!, v5hx , in the absence of noise an
wheren51 andl52. For the periodic case of interest her
analytical results are possible for the one-‘‘lump’’ solution

v5n$cot@n~x1a!#1cot@n~x1a* !#%, ~50!

where 2n is the wave number, the pole is described by t
time-dependent complex variablea5f1 ic with c.0, and
a* denotes the complex conjugate. Substitution of Eq.~50!
in Eq. ~49! shows thatf is a constant, which we can take a
f(0)50, without loss in generality. We find

v5
2n sin~2nx!

cosh@2nc~ t !#2cos~2nx!
, ~51!

wherec(t) solves the equation

c8~ t !5
2n sinh~4nc!

cosh~4nc!21
2m ~52!
5-7
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and has the implicit solution

1

~11g!
lnU exp~4nc!1~11g!/~12g!

exp@4nc~0!#1~11g!/~12g!
U

2S 12g

11g D2n@c2c~0!#54n2~12g!t, ~53!

where g[m/2n. For v to reach a nontrivial steady sta
requiresg.1 ~i.e., m.2n! which, in this case (n51), is
identical to the condition for the existence of an unsta
mode in the linear problem@dispersion relation~10!#.

Analytical and numerical results are shown in Fig. 3 f
the casesc(0)51, m50.2, andn52p/L, whereL5128 is
the lattice size. Comparison is shown for two different tim
The agreement between the solutions is very good, ex
near the end points of the simulation interval, where ther
a small discrepancy that increases somewhat at larger ti
Figure 3 implies the existence of a ‘‘wrinkled’’ front, th
slope of the front increasing rapidly at the ends of the int
val. This was noted in the simulations reported in@14,31,32#.
The results of Fig. 3~b! essentially correspond to a
asymptotic steady state, which, as expected from the the
is reached in this case ofg.1. Here, the nonlinearity acts t
stabilize the fastest growing mode. By contrast, ifg,1, the
slope of the front eventually vanishes, all modes be
stable. Excellent agreement between theory and nume
simulations was found for that case as well. Good agreem
between theory and simulations was also found in tes
more complex profiles that included more poles. From th
examples it was concluded that the computational sch
would lead to accurate solutions of the HKPZ equation.

IV. THE LINEARIZED HKPZ EQUATION

Insight into the behavior of the HKPZ equation can
obtained by considering its linearized version

FIG. 3. Comparison of the analytical solution of the extend
Burgers equation, denoted with a solid line, and the numerical
lution, denoted with crosses, for two different times~a! t53.57,~b!
51. The latter time corresponds effectively to a steady-state s
tion. HereL5128,n5p/64, andm50.2.
01631
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ht5nhxx2mH~hx!1h~x,t !. ~54!

For its analysis, we follow previous work on the KPZ equ
tion by Nattermann and Tang@33#. Consider a process with
periodic boundary conditions, initiated att50 @and in which
case h(x,t)50 for t,0#. By applying a double Fourier
transform in space and time, defined as

ĥ~k,v!5E
2`

` E
2`

`

e2 i ~kx2vt !h~x,t !dx dt, ~55!

Eq. ~54! becomes

ĥ~k,v!5
1

~nk22muku!2 iv
ĥ~k,v!. ~56!

Equivalently, given thath50 for t,0, we may take a
Laplace transform in time. Proceeding as in@33# and noting
that

^ĥ~k,v!ĥ~k8,v8!&52D~2p!d~k1k8!E
0

`

ei ~v1v8!tdt,

~57!

we find using Eq.~56! the result

^ĥ~k,t !ĥ~k8,t !&5
2pD

~nk22muku! @12e22~nk22muku!t#

3d~k1k8!, ~58!

based on which we can calculate the mean-square widt
the interface over the lattice,

w2~L,t !5Š@h~x,t !2^h~x,t !&#2
‹

5
1

4p2 E
2p/L

p/DxE
2p/L

p/Dx

^ĥ~k,t !ĥ~k8,t !&dk dk8.

~59!

Note that the lower and upper limits of the integrals a
2p/L andp/Dx, respectively. Substitution of Eq.~58! and
carrying out one integration yields

w2~L,t !5
1

p E
2p/L

p/Dx D

~nk22muku! @12e22~nk22muku!t#dk,

~60!

which can be further rearranged to read

w2~L,t !5
DL

pn E
2p

Np 1

~z21cz!
@12e22b~z21cz!#dz. ~61!

Here, we introduced the notationN5L/Dx, z5kL, c5
2mL/n52kcL, and the dimensionless timeb5tn/L2. The
effect of the nonlocal transport enters through parametec,
which is also proportional to the lattice sizeL. Note that the
denominator in Eq.~61! is singular whenc,0 ~which cor-

d
o-

u-
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responds to the destabilizing case!; however, the singularity
is removable. Equation~61! can be expressed in a compa
form as

w2~L,t !5
DL

pn
f ~b;c,N!, ~62!

where

f ~b;c,N!5E
2p

pN 1

z21cz
@12e22b~z21cz!#dz. ~63!

We note that the existence of two dimensionless variablec
and b, containing differentt and L dependences, breaks th
similarity scaling tn/L2 applicable in the EW equation
~wherec50!; thus one expects a different scaling behavi

In the following, we will consider the behavior o
f (b;c,N) in the two asymptotic limits of large and sma
times, respectively, for two different cases, a stabilizing c
c.22p, and a destabilizing casec,22p @and where we
took into account the dispersion relation~10!#. For each case
we will consider the two different limits of large and sma
times.

A. The stabilizing casecÌÀ2p

In the stabilizing case, and at large times (b@1), the
function f (b;c;N) approaches the limit

f ~b;c,N!'
1

c E2p

pN S 1

z
2

1

z1cDdz. ~64!

Due to the conditionc.22p, the above integral converge
Then, substitution in Eq.~62! gives the large-time result

w2~L,t !→w`
2 ~L !52

D

pm
lnS 12mL/2pn

12mDx/pn D . ~65!

Thus, in the stabilizing case the mean-square width satur
to a value which, for sufficiently largeL, has a logarithmic
dependence onL. This is to be contrasted with the power-la
scalingw2;L that applies in the 1D EW equation. The latt
scaling can also be derived from Eq.~65! in the limit m
→0. The saturation width decreases with increasingumu, re-
flecting the more compact nature of the front at increas
stabilization. The analytical results were confirmed using
merical simulations. Figure 4 shows a plot ofw`

2 (L) versus
ln@(12mL/2pn)/(12mDx/pn)#, obtained numerically, for
m520.5, n50.5, and various lattice sizes up toL5512. In
the simulations, the width was averaged over 100 real
tions. The theoretical calculations predict a straight line w
a slope equal to2D/pm50.0032. The figure shows ver
good agreement between theory and simulations.

In the opposite limit of small times (b!1), the integral in
Eq. ~63! can be manipulated to read as
01631
.

e
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h

f ~b;c,N!5A~b;c,N!2
1

c
lnS 2p

2p1cD
3@12e22b~4p212pc!#2

2b

c
I , ~66!

where we introduced the function

A~b;c,N!5
1

c
lnS pN

pN1cD2
1

c
lnS pN

pN1cDe22b~p2N21cpN!

'2
1

pN
1O~e22bp2N2

! ~67!

and the integral

I 5E
2p

pN

lnS z

z1cD ~2z1c!e22b~z21cz!dz. ~68!

Note that the right-hand side of Eq.~66! is well defined in
the limit c→22p, which is the point of transition from the
stabilizing to the destabilizing case. This also suggests
the early-time scaling applies equally well to the destabi
ing case. For sufficiently large discretization,b@N22, the
parameterA tends to21/pN, as in the EW equation, an
where we implicitly assumed thatumuDx!n. Thus, the first
term in Eq.~66! ~and the expansion forw2! is infinitesimally
small at largeN. The contribution from the second term i
Eq. ~66! is O(b); hence the leading-order term arises on
from the integralI. For sufficiently largeN, this becomes

I'
2b

c E
2p

`

lnS z

z1cD ~2z1c!e22b~z21cz!dz, ~69!

FIG. 4. Dependence of the saturation width on the lattice s
for the linearized HKPZ equation in the stabilizing case and
large times. The numerical results are denoted by stars and c
spond toL516,32,64,128,256,512, respectively. Here,m520.5,
andn50.5. The width in the vertical axis is the ensemble avera
over 100 realizations. The dashed line corresponds to the ana
cally calculated slope2D/pm50.0032.
5-9
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the asymptotic behavior of which at smallb can be evalu-
ated. After several manipulations, we obtain the result

I 5A2pb12bE
4p212pc

` S lnF12
2c

c1Ac214t
G1

c

At
D dt

1¯ . ~70!

Thus, the leading-order term isO(Ab), which when substi-
tuted in Eq.~62! gives the following small-time asymptoti
result:

w2~L,t !52
DDx

p2n
1

DL

pn
@A2pb1O~b!1O~e22bp2N2

!#.

~71!

It follows that in the rangeN22!b!1 the width of the front
scales as a power law of time with exponentb5 1

4 . This
scaling is identical to that of the EW equation, suggest
that in the small-time limit the nonlocal contribution does n
enter to leading order. This regime is preceded by a lin
scaling regime, the interval of which,b!N22, decreases
with increasingN, and where the corresponding exponent
b5 1

2 . This interval and exponent also apply in the EW ca
The above results were confirmed using numerical sim

lations. Figure 5 shows a log-log plot ofw(L,t) vs time. The
width is again averaged over 100 realizations of the no
while the parameters in the simulations take the valueL
5256, m520.5, andn50.5. Agreement between theor
and simulation is good, the two different regimes at sm
times having the theoretical slopes of1

2 and 1
4, respectively.

B. The destabilizing casecËÀ2p

In the destabilizing case, Eq.~10! shows thatm must sat-
isfy the constraintm.2pn/L, or, equivalently,c,22p.

FIG. 5. Dependence of the ensemble-averaged width on time
the linearized HKPZ equation for the stabilizing case and at e
times. The numerical results are denoted by stars. HereL5256,
m520.5, andn50.5. The dotted lines indicate the theoretica
calculated slopes. The width is averaged over 100 realizations
01631
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Now, the denominator in Eq.~63! vanishes in the range o
integration; however, the singularity is removable. T
asymptotic properties of the solution in the two limits
large and small times, respectively, can be obtained by p
ceeding as follows.

To obtain the behavior of the solution at large times,
decompose the integral into two parts,

f ~c;b;N!5E
2p

2c 1

z21cz
@12e22b~z21cz!#dz

1E
2c

pN 1

z21cz
@12e22b~z21cz!#dz. ~72!

In the limit of largeb, the second integral remains bounde
sincez21cz.0, but the first integral does not. Thus, at lar
times, the dominant contribution arises from the first te
only,

f ~b;c,N!;E
2p

2c 1

z21cz
@12e22b~z21cz!#dz. ~73!

By further manipulating this integral using Watson’s lemm
@34#, we get

f ~b;c,N!;
2A2p exp~bc2/2!

c2Ab
, ~74!

and final substitution in Eq.~62! yields the asymptotic be
havior of w at large times,

w;S 2pn

t D 1/4A2D

m
expS m2t

4n D . ~75!

As expected, the linearized equation results in exponen
growth at large times. The unbounded growth reflects
absence of any stabilizing influence due to nonlinear
which was demonstrated in the corresponding Eq.~49! ~see
also Olami et al. @17,32#!. Equation ~75! indicates that
ln(w2t1/2) is a linear function of time, with slopem2/2n. Fig-
ure 6 shows the corresponding numerical results for the
rametersL5256,m50.5, andn50.5. In agreement with the
theory, the slope of the plot in Fig. 6 is very close to t
theoreticalm2/2n50.25. The scaling at early times for th
destabilizing case is identical to that for the stabilizing, giv
that the nonlocal effect does not enter to leading order, he
a power-law scaling applies at early times.

The lack of simultaneous power-law scalings in the tw
limits ~small and large times! is a consequence of the fac
that the linear HKPZ equation does not admit a self-affi
solution. Indeed, a scaling approach in whichx→ lx, h
→ l ah, andt→ l zt @2# cannot be simultaneously satisfied f
the HKPZ equation due to the presence of the nonlocal te

C. The correlation function

For completeness, we also present results for the corr
tion function ~the semivariogram!

or
ly
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C~r ,t !5^uh~r ,t !2h~0,t !u2& ~76!

for the case of an infinitely large lattice. Working similar
and following closely Ref.@33#, we find the result

C~r ,t !5
2Dr

pn E
0

` 12exp@22x~y21ly!#

y21ly
~12cosy!dy,

~77!

where we introduced the variablesl52mr/n and x
5nt/r 2. The behavior ofC(r ,t) in the various asymptotic
limits follows closely that ofw2. For both stabilizing and
destabilizing case, the expansion at smallr is linear,

C~r ,t !;
Dr

pn
. ~78!

The correlation function increases withr and saturates a
large r to a value increasing with time,

C~r ,t !→ 2DAt

pAn
E

0

` 1

z21rz
@12exp~22z22rz!#dz

~79!

and where we introduced the time variabler52mAt/n. In
the stabilizing caser.0 andC(r ,t) approaches a limiting
value at large times. In the destabilizing caser,0 and the
large-time limit can be manipulated in the same manne
above to lead to an exponentially growing function,

C~r ,t !;expS r2

2 D5expS m2t

2n D . ~80!

FIG. 6. Dependence of the ensemble-averaged width on time
the linearized HKPZ equation for the destabilizing case at la
times. The numerical results are denoted by stars, whereL5256,
m50.5, andn50.5. The width is averaged over 100 realization
The dashed line is the analytical calculation with slopem2/2n
50.25.
01631
s

As before, the scaling behavior is affected by the presenc
the nonlocal transport termm, which breaks the self-
similarity and introduces additional dependences.

V. NUMERICAL SOLUTION OF THE HKPZ EQUATION

The preceding analysis suggests that the behavior of
HKPZ equation will also depend on whether the process
stabilizing or destabilizing. We used the numerical sche
described above to simulate the solution of the nonlin
equation in these two cases. Typically, the simulations w
carried out starting from an initially flat interface. Howeve
results were also obtained, particularly for the destabiliz
case of the noiseless equation~15!, starting from a random
initial position.

Results corresponding to the stabilizing case are show
Fig. 7. The figure shows snapshots of the front at early
late times. Both the front and its width increase with tim
and eventually approach a mean steady state, which flu
ates in both space and time. The presence of noise resu
the constant fluctuation of the front around its mean value
contrast to the flat front obtained asymptotically in the c
responding noiseless case, Eq.~51!. In addition, and in con-
trast to the linearized case, the asymptotic mean positio
the front is not zero, reflecting the effect of the nonline
contribution. The variation with time of the width average
over 100 realizations is shown in Fig. 8 forL5128, m5
20.5, andl57. For comparison purposes, also shown is
ensemble-averaged width corresponding to the KPZ equa
with the same parameters. The scaling behavior of the w
appears to be the same in the two equations at early tim
However, as time proceeds the width of the HKPZ equat
grows more slowly and saturates earlier and to smaller
ues, compared to those of the KPZ equation. This differe
reflects the more compact front expected in the stabiliz
HKPZ compared to the KPZ equation. We recall that in t
KPZ equation the front has self-affine characteristics, w

or
e

.

FIG. 7. Snapshots of the heighth(x,t) of the front of the HKPZ
equation under stabilizing conditions for two different timest
50.25 ~dotted line! and 50~solid line!. Here L5128, m520.5,
n50.5, andl57.
5-11
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the interface width satisfying the dynamic scaling

w~L,t ![Š@h~x,t !2^h~x,t !&#2
‹

1/2;La f ~ t/La/b!, ~81!

where f (c);cb for c!1, and f (c)→const asc@1. The
growth exponentb5 1

3 characterizes the time-dependent d
namics of the roughening process, while the roughness
ponenta50.5 characterizes the roughness of the satura
interface@2#. Figure 8 suggests that the HKPZ equation a
has an early-time power-law scaling similar to that of t
KPZ, namely, with exponentb5 1

3 . The independence from
the parameterm and the nonlocal character of the process
early times, are consistent with the linearized HKPZ fin
ings, where the early-time scaling is identical to that of t
EW equation. The sensitivity of the early-time scaling
changes in various parameters was tested by varyingL, m,
and l. Figure 9 shows that the behavior of the ensemb
averaged width is essentially unaffected by variations inl.
This was also the case for small values ofl. A similar effect
was found for the KPZ equation as well. The effect of t
nonlocal term is more important~Fig. 10! and affects the
range of validity of the early-time power-law regime and t
overall extent. Asumu increases, the power-law scaling
early times lasts for a shorter period, and the width is sma
overall. As before, this reflects the stabilizing influence
nonlocal transport.

The dependence of the saturation width at large times
parameterm and the lattice sizeL is shown in Fig. 11. As
before, larger values in the absolute magnitude ofm lead to
smaller asymptotic widths. The dependence on size is ra
weak. If, in an attempt to satisfy Eq.~81!, the curves were
fitted with a power law, a small exponenta would result,
estimated from the plot asa50.19. This exponent is consid
erably smaller than the corresponding roughness expone
the KPZ equation, wherea50.5. In analogy with the linear
ized HKPZ equation, we then elected to test the late-ti
results with a logarithmic function, of the formw2; ln L.

FIG. 8. Early-time behavior of the ensemble-averaged width
the KPZ ~represented by circles! and HKPZ equations under stab
lizing conditions ~represented by crosses!. Here L5128, m
520.5, n50.5, andl57.
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The results are shown in Fig. 12 and demonstrate a g
match for the three different values ofm tested. The slope o
the straight line is of the same order of magnitude as in
linearized case and decreases inversely proportionally toumu,
asumu increases. This is consistent with the findings from t
linearized HKPZ equation. We are led to conjecture, the
fore, that the scaling behavior of the HKPZ equation is not
the self-affine form~81!, but that the early-time power-law
scaling is followed at late times by a logarithmic dependen
of the front width on the lattice size.

Subsequently, we studied the behavior of the HKPZ un
destabilizing conditions, wherem.0. As noted before, a rig-
orous analysis of the similar equation~9!, which is the ex-

r FIG. 9. Effect ofl on the dependence of the ensemble-avera
width of the HKPZ equation under stabilizing conditions, at ea
times and for three different values ofl @l51 ~squares!, 7
~crosses!, 17.58~diamonds!#. HereL5128,m520.5, andn50.5.

FIG. 10. Effect of m on the dependence of the ensemb
averaged width of the HKPZ equation under stabilizing conditio
at early times and for three different values ofm @m520.2
~squares!, 20.5 ~crosses!, 20.7 ~circles!#. HereL5128,l57, and
n50.5.
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tended Burgers equation in the presence of noise, was un
taken by Olamiet al. @17#. These authors examined a numb
of issues, including the evolution of the solution of Eq.~9! in
the absence of noise but with noisy initial conditions, and
effect of noise. Although Eq.~9! is not the same as th
HKPZ equation, we anticipate similar results. In the follo
ing we will discuss the solution of the destabilizing HKP
equation in two cases, first in the absence of a noise forc
term but with noisy initial conditions, and second in the pre
ence of a noise forcing term.

The results of a simulation of the noiseless HKPZ eq
tion ~15! in 1D, but with noisy initial conditions, are show
in Fig. 13 for different values of time. At early times, th
front evolves in terms of well-defined fingers, the number

FIG. 11. Effect of m on the dependence of the ensemb
averaged width of the HKPZ equation under stabilizing conditio
at late times@m520.2 ~squares!, 20.5 ~circles!, 20.7 ~diamonds!#.
Herel57 andn50.5.

FIG. 12. Long-time behavior of the HKPZ equation under s
bilizing conditions. The ensemble-averaged width shows logar
mic scaling with the lattice sizeL ~where L516,32,64,128,256,
512!. Numerical results are indicated by squares form520.2, by
stars form520.5, and by circles form520.7. Heren50.5 and
l57. The dotted lines indicate a least squares straight-line fit.
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which decreases as time increases@Fig. 13~a!#. At later times
the shape of the front changes to a few dominant fingers
the development of a ‘‘giant’’ cusp@Fig. 13~b!#. These fea-
tures are very similar to those observed by Olamiet al. @17#,
who explained the attraction to a giant cusp by using po
decomposition. We expect that similar arguments will ho
here as well. The evolution of the width of the front as
function of time is plotted in Fig. 14. Following an initially
slow variation, the width enters a regime that can be appro
mated as a power laww;tz1 with an exponent estimated t
be z151.2. This value is similar to that reported by Olam
et al. @17# for the different equation they studied. Figure 1
also shows that the width stabilizes asymptotically to a va
expected to be size dependent.

-
s

-
-

FIG. 13. Snapshots of the height of the interface of the noise
HKPZ equation under destabilizing conditions starting from a no
initial condition. In plot ~a! the time ist55,25,50 from bottom to
the top. In plot~b! the time ist5100,200,250 from bottom to the
top. HereL5128,m50.5, n50.5, andl57.

FIG. 14. Ensemble-averaged width for the noiseless HK
equation under destabilizing conditions starting from a noisy ini
condition, corresponding to Fig. 13. HereL5128, m50.5, n
50.5, andl57.
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Results for the simulation of the full HKPZ equation
the presence of noise and for the destabilizing case
shown in Fig. 15. Comparison with Fig. 13 shows a quali
tively different behavior. The number of fingers does n
decrease significantly as time increases, while it does
appear that an attracting cusp actually exists. The add
noise present in the HKPZ equation continuously adds n
poles, altering the dynamics of the noiseless equation~15!.
As explained in@17#, the asymptotic state of the noisele
equation is nonlinearly unstable, thus leading to a qual
tively new regime. The behavior in Fig. 15 has features si
lar to those in regime II of Olamiet al. @17#, where noise is
of sufficiently large amplitude. Figure 16 shows the variati
of the ensemble-averaged width with time for this case
indicates a continuous growth, with the late-time behav
resembling a power-law regimew;tz2, with the exponent
estimated atz2'1.1.

FIG. 15. Snapshots of the heighth(x,t) of the front of the
HKPZ equation under destabilizing conditions starting with a
initial condition. Dotted line,t50.25; solid line, t510. HereL
5128,m50.5, n50.5, andl57.

FIG. 16. The ensemble-averaged width of the HKPZ equa
under destabilizing conditions as a function of time. HereL5128,
m50.5, n50.5, andl57.
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VI. CONCLUSIONS

In this paper, we derived an equation that extends
well-known KPZ equation in order to capture nonlocal tran
port effects, through a Hilbert transform term. This equatio
termed the HKPZ equation, can be used to describe the lo
wave dynamics, near the onset of the nonlocal transport
in the weakly nonlinear limit, of various physical process
where the nonlocal transport is governed by the Lapl
equation and the stabilizing term is a second-order diffus
process. The nonlocal term may lead to processes that ca
linearly stable or unstable, depending on the parameter
ues. A specific example from reactive infiltration was stud
and was shown to lead in the weakly nonlinear limit to t
noiseless HKPZ equation. The solution of the HKPZ equ
tion in one dimension was considered by developing an
propriate numerical scheme, the accuracy of which w
shown by comparison with the extended Burgers equatio
the absence of noise. An analytical solution to the latte
possible through a pole decomposition method.

Then, the linear version of the HKPZ equation was inve
tigated. Asymptotics for small and large times were dev
oped and the appropriate scaling behavior was obtained
lytically in these limits. The early-time behavior was foun
to be independent of the nonlocal transport term, hence id
tical to that for the EW equation, for either the stabilizing
the destabilizing case. This behavior is a power law w
exponentb5 1

4 . In the stabilizing case, the width saturates
large times to a value that has a logarithmic dependence
lattice size, reflecting the nonlocal character of the proce
This is different from the EW equation, where a power-la
regime applies. In the destabilizing case, the late-time beh
ior is exponential growth with a rate corresponding to t
fastest growing mode of the linear dispersion relation,
expected.

Subsequently, the full HKPZ equation was solved nume
cally in one spatial dimension. For the stabilizing case,
dynamical exponent was found to be identical to that of
KPZ equation, hence to not be affected by the nonlocal te
On the other hand, the long-time behavior appears to ob
logarithmic scaling with respect to the lattice size. The larg
time scaling is also sensitive to the nonlocal transport par
eters. For the destabilizing case, we found results simila
Olami et al. @17#. The noiseless equation, but with noisy in
tial condition, showed attraction to a giant cusp. Howev
the solution of the HKPZ equation in the presence of no
showed continuous fluctuations, and the absence of a do
nant giant cusp. The width at late times was found to obe
power-law growth.

These results should find direct applications to the dyna
ics of growing interfaces, where the flux to the interface
controlled by a nonlocal Laplacian transport. Such appli
tions are many and cover a broad range of physical p
cesses. For example, they may include the displacemen
viscous fluids in porous media, convection-reaction in p
rous media with permeability changes, reaction-diffusi
processes on pore surfaces with morphological changes,
flame propagation. We also believe that the process stu
in @8# falls in the same class. The effect of the no

t

n
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local term becomes important at large times, the early-t
behavior being controlled by the KPZ dynamics. In the s
bilizing case (m,0), the width asymptotically stabilizes
however, the power-law prediction of the KPZ equation m
now be replaced by a logarithmic dependence on the la
size. This dependence breaks down the spatiotemporal
affinity of the KPZ interfaces, and also leads to more co
pact fronts. The development of more compact fronts i
result of the stabilizing influence of nonlocal transport. U
der such conditions, therefore, one should use caution be
applying the scalings derived from the KPZ equation. In
destabilizing case, the evolution of interfaces at large tim
also shows behavior significantly different from that of t
KPZ equation. Specifically, the front width does not satur
at large times but rather increases as a power law in ti
reflecting the frontal instability. We must note that for
physical application, for example, in reactive infiltration, t
validity of this scaling is subject to the restrictions of lar
ys

.
,
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wavelengths near the onset of instability~namely, when the
destabilizing contrast is weak,k21!1, or small,m.0!. In
the more general case of strong instability, the HKPZ eq
tion does not apply and cannot capture Laplacian grow
which must be modeled instead by processes such
diffusion-limited aggregation~e.g., see@15# and related ref-
erences!. In a sense, in the destabilizing case the HK
equation corresponds to the weak-instability limit, with DL
being its strong-instability counterpart.
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